Multiplicative Partial Differential Equations


Book Description

The book includes new classification and canonical forms of Second order MPDEs Proposes a new technique to solve the multiplicative wave equation such as method of separation of variables, energy method. The proposed technique in the book can be used to give the basic properties of multiplicative elliptic problems, the fundamental solutions, multiplicative integral representation of multiplicative harmonic functions, mean-value formulas, strong principle of maximum, the multiplicative Poisson equation, multiplicative Green functions, method of separation of variables, theorems of Liouville and Harnack.




Multiplicative Partial Differential Equations


Book Description

Multiplicative Partial Differential Equations presents an introduction to the theory of multiplicative partial differential equations (MPDEs). It is suitable for all types of basic courses on MPDEs. The author’s aim is to present a clear and well-organized treatment of the concept behind the development of mathematics and solution techniques. The text material of this book is presented in a highly readable, mathematically solid format. Many practical problems are illustrated displaying a wide variety of solution techniques. Features Includes new classification and canonical forms of second-order MPDEs Proposes a new technique to solving the multiplicative wave equation such as the method of separation of variables and the energy method The proposed technique in the book can be used to give the basic properties of multiplicative elliptic problems, fundamental solutions, multiplicative integral representation of multiplicative harmonic functions, mean-value formulas, strong principle of maximum, multiplicative Poisson equation, multiplicative Green functions, method of separation of variables, and theorems of Liouville and Harnack




Multiplicative Differential Equations


Book Description

Multiplicative Differential Equations: Volume II is the second part of a comprehensive approach to the subject. It continues a series of books written by the authors on multiplicative, geometric approaches to key mathematical topics. This volume is devoted to the theory of multiplicative differential systems. The asymptotic behavior of the solutions of such systems is studied. Stability theory for multiplicative linear and nonlinear systems is introduced and boundary value problems for second-order multiplicative linear and nonlinear equations are explored. The authors also present first-order multiplicative partial differential equations. Each chapter ends with a section of practical problems. The text is accessible to graduate students and researchers in mathematics, physics, engineering and biology.




Geometric Level Set Methods in Imaging, Vision, and Graphics


Book Description

Here is, for the first time, a book that clearly explains and applies new level set methods to problems and applications in computer vision, graphics, and imaging. It is an essential compilation of survey chapters from the leading researchers in the field. The applications of the methods are emphasized.




Controllability of Partial Differential Equations Governed by Multiplicative Controls


Book Description

This monograph addresses the global controllability of partial differential equations in the context of multiplicative (or bilinear) controls, which enter the model equations as coefficients. The methodology is illustrated with a variety of model equations.




Partial Differential Equations and Group Theory


Book Description

Ordinary differential control thPory (the classical theory) studies input/output re lations defined by systems of ordinary differential equations (ODE). The various con cepts that can be introduced (controllability, observability, invertibility, etc. ) must be tested on formal objects (matrices, vector fields, etc. ) by means of formal operations (multiplication, bracket, rank, etc. ), but without appealing to the explicit integration (search for trajectories, etc. ) of the given ODE. Many partial results have been re cently unified by means of new formal methods coming from differential geometry and differential algebra. However, certain problems (invariance, equivalence, linearization, etc. ) naturally lead to systems of partial differential equations (PDE). More generally, partial differential control theory studies input/output relations defined by systems of PDE (mechanics, thermodynamics, hydrodynamics, plasma physics, robotics, etc. ). One of the aims of this book is to extend the preceding con cepts to this new situation, where, of course, functional analysis and/or a dynamical system approach cannot be used. A link will be exhibited between this domain of applied mathematics and the famous 'Backlund problem', existing in the study of solitary waves or solitons. In particular, we shall show how the methods of differ ential elimination presented here will allow us to determine compatibility conditions on input and/or output as a better understanding of the foundations of control the ory. At the same time we shall unify differential geometry and differential algebra in a new framework, called differential algebraic geometry.







Handbook of Nonlinear Partial Differential Equations, Second Edition


Book Description

New to the Second Edition More than 1,000 pages with over 1,500 new first-, second-, third-, fourth-, and higher-order nonlinear equations with solutions Parabolic, hyperbolic, elliptic, and other systems of equations with solutions Some exact methods and transformations Symbolic and numerical methods for solving nonlinear PDEs with MapleTM, Mathematica®, and MATLAB® Many new illustrative examples and tables A large list of references consisting of over 1,300 sources To accommodate different mathematical backgrounds, the authors avoid wherever possible the use of special terminology. They outline the methods in a schematic, simplified manner and arrange the material in increasing order of complexity.




Handbook of Nonlinear Partial Differential Equations


Book Description

The Handbook of Nonlinear Partial Differential Equations is the latest in a series of acclaimed handbooks by these authors and presents exact solutions of more than 1600 nonlinear equations encountered in science and engineering--many more than any other book available. The equations include those of parabolic, hyperbolic, elliptic and other types, and the authors pay special attention to equations of general form that involve arbitrary functions. A supplement at the end of the book discusses the classical and new methods for constructing exact solutions to nonlinear equations. To accommodate different mathematical backgrounds, the authors avoid wherever possible the use of special terminology, outline some of the methods in a schematic, simplified manner, and arrange the equations in increasing order of complexity. Highlights of the Handbook:




The Fokker-Planck Equation


Book Description

This is the first textbook to include the matrix continued-fraction method, which is very effective in dealing with simple Fokker-Planck equations having two variables. Other methods covered are the simulation method, the eigen-function expansion, numerical integration, and the variational method. Each solution is applied to the statistics of a simple laser model and to Brownian motion in potentials. The whole is rounded off with a supplement containing a short review of new material together with some recent references. This new study edition will prove to be very useful for graduate students in physics, chemical physics, and electrical engineering, as well as for research workers in these fields.