Multiscale Cell-Biomaterials Interplay in Musculoskeletal Tissue Engineering and Regenerative Medicine


Book Description

Multiscale Cell-Biomaterials Interplay in Musculoskeletal Tissue Engineering and Regenerative Medicine addresses the key concepts involved in the interactions between cells and biomaterials in the musculoskeletal tissue engineering and regenerative medicine field. The updated developments and challenges of the mechanisms/mechanobiology and structure-function properties of those interactions, as well as emerging technologies underlying tissue-engineered scaffolding, are carefully discussed. Lastly, cell engineering and cell-based therapies, growth factors/drugs properties, vascularization, immunomodulation are also outlined. Given the large number of musculoskeletal disorders and related injuries that can affect muscles, bones and joints and lead to severe complications of the neuromuscular system, it is imperative to develop new treatment strategies to delay or repair associated diseases and to promote optimal long-term health. Presents the fundamentals of the complex interplay of cells with biomaterials in musculoskeletal tissue engineering Includes coverage of stem cells and cell-based therapies, in vitro and in vivo models, nanotechnology, bioprinting, computational modeling, regulatory and clinical translation, and much more Written by global leaders in the field




Multiscale Biomaterials for Cell and Tissue Engineering


Book Description

Next, a bottom-up approach for fabricating 3D vascularized human breast tumor model with the core-shell microencapsulation technology is developed. Microtumors (i.e., 3D aggregates of cancer cells) are generated in core-shell microcapsules and used together with human endothelial cells and human adipose derived stem cells (hADSCs) as building blocks to self-assemble into vascularized tumor in collagen hydrogel. The utility of the platform in drug screening is further demonstrated. It is shown that vascularization can render increased cancer resistance to chemotherapy. This vascularized tumor system may be valuable for in vitro drug screening to better predict the drug efficacy in cancer patients. Lastly, a multiscale system for efficient co-delivery of cells and proteins/growth factors in vivo is developed to address the issue of low cell survival associated with cell delivery in vivo. The multiscale delivery system is comprised of therapeutic agents-laden nanoparticles encapsulated in microcapsules (nano-in-micro), hADSCs, and collagen hydrogel. The nano-in-micro system enables sustained release of therapeutic proteins to interact with their receptors on the hADSCs in the system which significantly improves the survival and proliferation of the hADSCs after implantation. This is shown to greatly facilitate the tissue regeneration in an ischemic disease model. To conclude, this dissertation work demonstrates how microscale encapsulation of cells via microfluidics provides a powerful suite of tools to engineering the cellular microenvironment at micro and macro scales. The technologies and systems described here could potentially help in building tissue engineering constructs that enable treatment of a myriad of human diseases.




Multiscale Mechanobiology in Tissue Engineering


Book Description

This book focuses on the mechanobiological principles in tissue engineering with a particular emphasis on the multiscale aspects of the translation of mechanical forces from bioreactors down to the cellular level. The book contributes to a better understanding of the design and use of bioreactors for tissue engineering and the use of mechanical loading to optimize in vitro cell culture conditions. It covers experimental and computational approaches and the combination of both to show the benefits that computational modelling can bring to experimentalists when studying in vitro cell culture within a scaffold. With topics from multidisciplinary fields of the life sciences, medicine, and engineering, this work provides a novel approach to the use of engineering tools for the optimization of biological processes and its application to regenerative medicine. The volume is a valuable resource for researchers and graduate students studying mechanobiology and tissue engineering. For undergraduate students it also provides deep insight into tissue engineering and its use in the design of bioreactors. The book is supplemented with extensive references for all chapters to help the reader to progress through the study of each topic.




Biomaterials for Cell Delivery


Book Description

The purpose of this book is to summarize key strategies and recent accomplishments in the area of developing cell/biomaterial constructs for regenerative medicine. The first section is a review of the state-of-the-art of biomaterial carriers and is divided into synthetic and natural materials. A subset of the latter are decellularized organs which retain the structure and some of the biological activities of the target organ. The bulk of the book is devoted to unique problems associated with key tissue and organ targets.




Multiscale Simulations and Mechanics of Biological Materials


Book Description

Multiscale Simulations and Mechanics of Biological Materials A compilation of recent developments in multiscale simulation and computational biomaterials written by leading specialists in the field Presenting the latest developments in multiscale mechanics and multiscale simulations, and offering a unique viewpoint on multiscale modelling of biological materials, this book outlines the latest developments in computational biological materials from atomistic and molecular scale simulation on DNA, proteins, and nano-particles, to meoscale soft matter modelling of cells, and to macroscale soft tissue and blood vessel, and bone simulations. Traditionally, computational biomaterials researchers come from biological chemistry and biomedical engineering, so this is probably the first edited book to present work from these talented computational mechanics researchers. The book has been written to honor Professor Wing Liu of Northwestern University, USA, who has made pioneering contributions in multiscale simulation and computational biomaterial in specific simulation of drag delivery at atomistic and molecular scale and computational cardiovascular fluid mechanics via immersed finite element method. Key features: Offers a unique interdisciplinary approach to multiscale biomaterial modelling aimed at both accessible introductory and advanced levels Presents a breadth of computational approaches for modelling biological materials across multiple length scales (molecular to whole-tissue scale), including solid and fluid based approaches A companion website for supplementary materials plus links to contributors’ websites (www.wiley.com/go/li/multiscale)




Biomaterials for Organ and Tissue Regeneration


Book Description

Biomaterials for Organ and Tissue Regeneration: New Technologies and Future Prospects examines the use of biomaterials in applications related to artificial tissues and organs. With a strong focus on fundamental and traditional tissue engineering strategies, the book also examines how emerging and enabling technologies are being developed and applied. Sections provide essential information on biomaterial, cell properties and cell types used in organ generation. A section on state-of-the-art in organ regeneration for clinical purposes is followed by a discussion on enabling technologies, such as bioprinting, on chip organ systems and in silico simulations. Provides a systematic overview of the field, from fundamentals, to current challenges and opportunities Encompasses the classic paradigm of tissue engineering for creation of new functional tissue Discusses enabling technologies such as bioprinting, organ-on-chip systems and in silico simulations




Biomaterials in Tissue Engineering and Regenerative Medicine


Book Description

This book comprehensively explores the basic concepts and applications of biomaterials in tissue engineering and regenerative medicine. The book is divided into four sections; the first section deals with the basic concepts and different types of biomaterials used in tissue engineering. The second section discusses the functional requirements and types of materials that are used in developing state-of-the-art of scaffolds for tissue engineering applications. The third section presents the applications of biomaterials for hard and soft tissue engineering, as well as for specialized tissue engineering. The last section addresses the future prospects of nanobiomaterials, intelligent biomaterials, and 3D bioprinting biomaterials in tissue engineering and regenerative medicine. It also discusses various in vitro disease models for tissue bioengineering and regenerative medicine. As such, it offers a valuable resource for students, researchers, scientists, entrepreneurs, and medical/healthcare professionals.




Materiomics: Multiscale Mechanics of Biological Materials and Structures


Book Description

Multiscale mechanics of hierarchical materials plays a crucial role in understanding and engineering biological and bioinspired materials and systems. The mechanical science of hierarchical tissues and cells in biological systems has recently emerged as an exciting area of research and provides enormous opportunities for innovative basic research and technological advancement. Such advances could enable us to provide engineered materials and structure with properties that resemble those of biological systems, in particular the ability to self-assemble, to self-repair, to adapt and evolve, and to provide multiple functions that can be controlled through external cues. This book presents material from leading researchers in the field of mechanical sciences of biological materials and structure, with the aim to introduce methods and applications to a wider range of engineers.




Biomimetic Biomaterials for Tissue Regeneration and Drug Delivery


Book Description

This book illustrates the influence of biomimetics in the field of tissue engineering and drug delivery. These two distinct fields of regenerative medicine have greatly benefited from the concept of biomimetics, which focuses on using or imitating nature to develop materials for improving human lives. The book begins by highlighting the relevance and recent advances in biomimetic biomaterials. An updated and innovative content has been presented in terms of biomimetic systems that are being utilized in controlled delivery and stem cell therapy. Further, the book reviews the role of these materials in enhanced capacity for drug loading, cellular uptake, and controlled release within the target cells. The book includes advanced techniques for characterizing biomimetic biomaterials and highlights their pivotal role in providing three-dimensional templates and synthetic extracellular matrices.




Advances in Biomaterials for Biomedical Applications


Book Description

This book highlights recent advances in the field of biomaterials design and the state of the art in biomaterials applications for biomedicine. Addressing key aspects of biomaterials, the book explores technological advances at multi-scale levels (macro, micro, and nano), which are used in applications related to cell and tissue regeneration. The book also discusses the future scope of bio-integrated systems. The contents are supplemented by illustrated examples, and schematics of molecular and cellular interactions with biomaterials/scaffolds are included to promote a better understanding of the complex biological mechanisms involved in material-to-biomolecule interactions. The book also covers factors that govern cell growth, differentiation, and regeneration in connection with the treatment and recovery of native biological systems. Tissue engineering, drug screening and delivery, and electrolyte complexes for biomedical applications are also covered in detail. This book offers a comprehensive reference guide for multi-disciplinary communities working in the area of biomaterials, and will benefit researchers and graduate students alike.