Multiscale Potential Theory


Book Description

This self-contained text/reference provides a basic foundation for practitioners, researchers, and students interested in any of the diverse areas of multiscale (geo)potential theory. New mathematical methods are developed enabling the gravitational potential of a planetary body to be modeled using a continuous flow of observations from land or satellite devices. Harmonic wavelets methods are introduced, as well as fast computational schemes and various numerical test examples. Presented are multiscale approaches for numerous geoscientific problems, including geoidal determination, magnetic field reconstruction, deformation analysis, and density variation modelling With exercises at the end of each chapter, the book may be used as a textbook for graduate-level courses in geomathematics, applied mathematics, and geophysics. The work is also an up-to-date reference text for geoscientists, applied mathematicians, and engineers.




Geomathematically Oriented Potential Theory


Book Description

As the Earth`s surface deviates from its spherical shape by less than 0.4 percent of its radius and today’s satellite missions collect their gravitational and magnetic data on nearly spherical orbits, sphere-oriented mathematical methods and tools play important roles in studying the Earth’s gravitational and magnetic field. Geomathematically Oriented Potential Theory presents the principles of space and surface potential theory involving Euclidean and spherical concepts. The authors offer new insight on how to mathematically handle gravitation and geomagnetism for the relevant observables and how to solve the resulting potential problems in a systematic, mathematically rigorous framework. The book begins with notational material and the necessary mathematical background. The authors then build the foundation of potential theory in three-dimensional Euclidean space and its application to gravitation and geomagnetism. They also discuss surface potential theory on the unit sphere along with corresponding applications. Focusing on the state of the art, this book breaks new geomathematical grounds in gravitation and geomagnetism. It explores modern sphere-oriented potential theoretic methods as well as classical space potential theory.




Geomathematically Oriented Potential Theory


Book Description

As the Earth`s surface deviates from its spherical shape by less than 0.4 percent of its radius and today's satellite missions collect their gravitational and magnetic data on nearly spherical orbits, sphere-oriented mathematical methods and tools play important roles in studying the Earth's gravitational and magnetic field. Geomathematically Orien




Computational Multiscale Modeling of Fluids and Solids


Book Description

Devastatingly simple, yet hugely effective, the concept of this timely text is to provide a comprehensive overview of computational physics methods and techniques used for materials modeling on different length and time scales. Each chapter first provides an overview of the physical basic principles which are the basis for the numerical and mathematical modeling on the respective length scale. The book includes the micro scale, the meso-scale and the macro scale.




Handbook of Mathematical Geodesy


Book Description

Written by leading experts, this book provides a clear and comprehensive survey of the “status quo” of the interrelating process and cross-fertilization of structures and methods in mathematical geodesy. Starting with a foundation of functional analysis, potential theory, constructive approximation, special function theory, and inverse problems, readers are subsequently introduced to today’s least squares approximation, spherical harmonics reflected spline and wavelet concepts, boundary value problems, Runge-Walsh framework, geodetic observables, geoidal modeling, ill-posed problems and regularizations, inverse gravimetry, and satellite gravity gradiometry. All chapters are self-contained and can be studied individually, making the book an ideal resource for both graduate students and active researchers who want to acquaint themselves with the mathematical aspects of modern geodesy.




Numerical Fourier Analysis


Book Description

New technological innovations and advances in research in areas such as spectroscopy, computer tomography, signal processing, and data analysis require a deep understanding of function approximation using Fourier methods. To address this growing need, this monograph combines mathematical theory and numerical algorithms to offer a unified and self-contained presentation of Fourier analysis. The first four chapters of the text serve as an introduction to classical Fourier analysis in the univariate and multivariate cases, including the discrete Fourier transforms, providing the necessary background for all further chapters. Next, chapters explore the construction and analysis of corresponding fast algorithms in the one- and multidimensional cases. The well-known fast Fourier transforms (FFTs) are discussed, as well as recent results on the construction of the nonequispaced FFTs, high-dimensional FFTs on special lattices, and sparse FFTs. An additional chapter is devoted to discrete trigonometric transforms and Chebyshev expansions. The final two chapters consider various applications of numerical Fourier methods for improved function approximation, including Prony methods for the recovery of structured functions. This new edition has been revised and updated throughout, featuring new material on a new Fourier approach to the ANOVA decomposition of high-dimensional trigonometric polynomials; new research results on the approximation errors of the nonequispaced fast Fourier transform based on special window functions; and the recently developed ESPIRA algorithm for recovery of exponential sums, among others. Numerical Fourier Analysis will be of interest to graduate students and researchers in applied mathematics, physics, computer science, engineering, and other areas where Fourier methods play an important role in applications.




Advances in Chemical Engineering


Book Description

The cross-fertilization of physico-chemical and mathematical ideas has a long historical tradition. This volume of Advances in Chemical Engineering is almost completely dedicated to a conference on "Mathematics in Chemical Kinetics and Engineering (MaCKiE-2007), which was held in Houston in February 2007, bringing together about 40 mathematicians, chemists, and chemical engineers from 10 countries to discuss the application and development of mathematical tools in their respective fields. - Updates and informs the reader on the latest research findings using original reviews - Written by leading industry experts and scholars - Reviews and analyzes developments in the field




Issues in Mechanical Engineering: 2011 Edition


Book Description

Issues in Mechanical Engineering / 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Mechanical Engineering. The editors have built Issues in Mechanical Engineering: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Mechanical Engineering in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Mechanical Engineering: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.




Multivariate Algorithms and Information-Based Complexity


Book Description

The contributions by leading experts in this book focus on a variety of topics of current interest related to information-based complexity, ranging from function approximation, numerical integration, numerical methods for the sphere, and algorithms with random information, to Bayesian probabilistic numerical methods and numerical methods for stochastic differential equations.




Multiscale Analysis of Deformation and Failure of Materials


Book Description

Presenting cutting-edge research and development within multiscale modeling techniques and frameworks, Multiscale Analysis of Deformation and Failure of Materials systematically describes the background, principles and methods within this exciting new & interdisciplinary field. The author’s approach emphasizes the principles and methods of atomistic simulation and its transition to the nano and sub-micron scale of a continuum, which is technically important for nanotechnology and biotechnology. He also pays close attention to multiscale analysis across the micro/meso/macroscopy of a continuum, which has a broad scope of applications encompassing different disciplines and practices, and is an essential extension of mesomechanics. Of equal interest to engineers, scientists, academics and students, Multiscale Analysis of Deformation and Failure of Materials is a multidisciplinary text relevant to those working in the areas of materials science, solid and computational mechanics, bioengineering and biomaterials, and aerospace, automotive, civil, and environmental engineering. Provides a deep understanding of multiscale analysis and its implementation Shows in detail how multiscale models can be developed from practical problems and how to use the multiscale methods and software to carry out simulations Discusses two interlinked categories of multiscale analysis; analysis spanning from the atomistic to the micro-continuum scales, and analysis across the micro/meso/macro scale of continuum.