Physics of the Human Temporality


Book Description

This book presents a novel account of the human temporal dimension called the “human temporality” and develops a special mathematical formalism for describing such an object as the human mind. One of the characteristic features of the human mind is its temporal extent. For objects of physical reality, only the present exists, which may be conceived as a point-like moment in time. In the human temporality, the past retained in the memory, the imaginary future, and the present coexist and are closely intertwined and impact one another. This book focuses on one of the fragments of the human temporality called the complex present. A detailed analysis of the classical and modern concepts has enabled the authors to put forward the idea of the multi-component structure of the present. For the concept of the complex present, the authors proposed a novel account that involves a qualitative description and a special mathematical formalism. This formalism takes into account human goal-oriented behavior and uncertainty in human perception. The present book can be interesting for theoreticians, physicists dealing with modeling systems where the human factor plays a crucial role, philosophers who are interested in applying philosophical concepts to constructing mathematical models, and psychologists whose research is related to modeling mental processes.




Multisensory Flavor Perception


Book Description

Multisensory Flavor Perception: From Fundamental Neuroscience Through to the Marketplace provides state-of-the-art coverage of the latest insights from the rapidly-expanding world of multisensory flavor research. The book highlights the various types of crossmodal interactions, such as sound and taste, and vision and taste, showing their impact on sensory and hedonic perception, along with their consumption in the context of food and drink. The chapters in this edited volume review the existing literature, also explaining the underlying neural and psychological mechanisms which lead to crossmodal perception of flavor. The book brings together research which has not been presented before, making it the first book in the market to cover the literature of multisensory flavor perception by incorporating the latest in psychophysics and neuroscience. - Authored by top academics and world leaders in the field - Takes readers on a journey from the neurological underpinnings of multisensory flavor perception, then presenting insights that can be used by food companies to create better flavor sensations for consumers - Offers a wide perspective on multisensory flavor perception, an area of rapidly expanding knowledge




The Neural Bases of Multisensory Processes


Book Description

It has become accepted in the neuroscience community that perception and performance are quintessentially multisensory by nature. Using the full palette of modern brain imaging and neuroscience methods, The Neural Bases of Multisensory Processes details current understanding in the neural bases for these phenomena as studied across species, stages of development, and clinical statuses. Organized thematically into nine sub-sections, the book is a collection of contributions by leading scientists in the field. Chapters build generally from basic to applied, allowing readers to ascertain how fundamental science informs the clinical and applied sciences. Topics discussed include: Anatomy, essential for understanding the neural substrates of multisensory processing Neurophysiological bases and how multisensory stimuli can dramatically change the encoding processes for sensory information Combinatorial principles and modeling, focusing on efforts to gain a better mechanistic handle on multisensory operations and their network dynamics Development and plasticity Clinical manifestations and how perception and action are affected by altered sensory experience Attention and spatial representations The last sections of the book focus on naturalistic multisensory processes in three separate contexts: motion signals, multisensory contributions to the perception and generation of communication signals, and how the perception of flavor is generated. The text provides a solid introduction for newcomers and a strong overview of the current state of the field for experts.




Sensory Cue Integration


Book Description

This book is concerned with sensory cue integration both within and between sensory modalities, and focuses on the emerging way of thinking about cue combination in terms of uncertainty. These probabilistic approaches derive from the realization that our sensors are noisy and moreover are often affected by ambiguity. For example, mechanoreceptor outputs are variable and they cannot distinguish if a perceived force is caused by the weight of an object or by force we are producing ourselves. The probabilistic approaches elaborated in this book aim at formalizing the uncertainty of cues. They describe cue combination as the nervous system's attempt to minimize uncertainty in its estimates and to choose successful actions. Some computational approaches described in the chapters of this book are concerned with the application of such statistical ideas to real-world cue-combination problems. Others ask how uncertainty may be represented in the nervous system and used for cue combination. Importantly, across behavioral, electrophysiological and theoretical approaches, Bayesian statistics is emerging as a common language in which cue-combination problems can be expressed.




Updates on multisensory perception: from neurons to cognition


Book Description

In recent years there has been a dramatic progress in understanding how stimuli from different sensory modalities are integrated among each other. Multisensory integration results in a unitary representation of the world that strongly characterizes perception and cognition in humans. Knowledge about multi sensory integration has research techniques and approaches, including neurophysiology, experimental psychology, neuropsychology, neuroimaging, and computational modelling. This special issue aims at presenting an up-to-date integrative overview of the physiological, psychological, developmental, and functional processes associated with multisensory integration. The proposed collection of papers is organized thematically into sections, each featuring a state-of-the-art review of key themes in multisensory research, from more approaches in the animal, to the study of multisensory perception and cognition in humans. Specifically, this special issue will consider: The physiological mechanisms of multisensory processing in cortical and subcortical brain structures of model animal species, (rat, cat, and monkey); current biologically inspired computational modelling of multisensory integration; evidence about the multisensory contributions to perception in humans, as highlighted by psychophysical and neuropsychological evidence; the neural basis of multisensory processing in the human brain uncovered by recent neuroimaging techniques, including EEG, PET, fMRI; the consequences of the breakdown of normal sensory integration as shown by studies with techniques of brain stimulation in humans; developmental processes of multisensory perception in humans and the constrains for the emergence of multisensory processes in relation to sensory experience; the issue of crossmodal neuroplasticity concerning behavioral and neural changes following sensory deprivation. The challenge of this Research Topic is to provide an interdisciplinary context allowing to understand the basic principles of multisensory integration in humans and the key issues that this fascinating field of study rises for future research.




Stevens' Handbook of Experimental Psychology and Cognitive Neuroscience, Set


Book Description

Since the first edition was published in 1951, The Stevens' Handbook of Experimental Psychology has been recognized as the standard reference in the field. The most recent (3rd) edition of the handbook was published in 2004, and it was a success by any measure. But the field of experimental psychology has changed in dramatic ways since then. Throughout the first 3 editions of the handbook, the changes in the field were mainly quantitative in nature. That is, the size and scope of the field grew steadily from 1951 to 2004, a trend that was reflected in the growing size of the handbook itself: the 1-volume first edition (1951) was succeeded by a 2-volume second edition (1988) and then by a 4-volume third edition (2004). Since 2004, however, this still-growing field has also changed qualitatively in the sense that, in virtually every subdomain of experimental psychology, theories of the mind have evolved into theories of the brain. Research methods in experimental psychology have changed accordingly and now include not only venerable EEG recordings (long a staple of research in psycholinguistics) but also MEG, fMRI, TMS, and single-unit recording. The trend towards neuroscience is an absolutely dramatic, worldwide phenomenon that is unlikely to ever be reversed. Thus, the era of purely behavioral experimental psychology is already long gone, even though not everyone has noticed. Experimental psychology and "cognitive neuroscience" (an umbrella term that includes behavioral neuroscience, social neuroscience and developmental neuroscience) are now inextricably intertwined. Nearly every major psychology department in the country has added cognitive neuroscientists to its ranks in recent years, and that trend is still growing. A viable handbook of experimental psychology should reflect the new reality on the ground. There is no handbook in existence today that combines basic experimental psychology and cognitive neuroscience, this despite the fact that the two fields are interrelated – and even interdependent – because they are concerned with the same issues (e.g., memory, perception, language, development, etc.). Almost all neuroscience-oriented research takes as its starting point what has been learned using behavioral methods in experimental psychology. In addition, nowadays, psychological theories increasingly take into account what has been learned about the brain (e.g., psychological models increasingly need to be neurologically plausible). These considerations explain why this edition of: The Stevens' Handbook of Experimental Psychology is now called The Stevens' Handbook of Experimental Psychology and Cognitive Neuroscience. The title serves as a reminder that the two fields go together and as an announcement that the Stevens' Handbook covers it all. The 4th edition of the Stevens’ Handbook is a 5-volume set structured as follows: I. Learning & Memory: Elizabeth Phelps & Lila Davachi (Volume Editors) Topics include fear learning; time perception; working memory; visual object recognition; memory and future imagining; sleep and memory; emotion and memory; attention and memory; motivation and memory; inhibition in memory; education and memory; aging and memory; autobiographical memory; eyewitness memory; and category learning. II. Sensation, Perception & Attention: John Serences (Volume Editor) Topics include attention; vision; color vision; visual search; depth perception; taste; touch; olfaction; motor control; perceptual learning; audition; music perception; multisensory integration; vestibular, proprioceptive, and haptic contributions to spatial orientation; motion perception; perceptual rhythms; the interface theory of perception; perceptual organization; perception and interactive technology; perception for action. III. Language & Thought: Sharon Thompson-Schill (Volume Editor) Topics include reading; discourse and dialogue; speech production; sentence processing; bilingualism; concepts and categorization; culture and cognition; embodied cognition; creativity; reasoning; speech perception; spatial cognition; word processing; semantic memory; moral reasoning. IV. Developmental & Social Psychology: Simona Ghetti (Volume Editor) Topics include development of visual attention; self-evaluation; moral development; emotion-cognition interactions; person perception; memory; implicit social cognition; motivation group processes; development of scientific thinking; language acquisition; category and conceptual development; development of mathematical reasoning; emotion regulation; emotional development; development of theory of mind; attitudes; executive function. V. Methodology: E. J. Wagenmakers (Volume Editor) Topics include hypothesis testing and statistical inference; model comparison in psychology; mathematical modeling in cognition and cognitive neuroscience; methods and models in categorization; serial versus parallel processing; theories for discriminating signal from noise; Bayesian cognitive modeling; response time modeling; neural networks and neurocomputational modeling; methods in psychophysics analyzing neural time series data; convergent methods of memory research; models and methods for reinforcement learning; cultural consensus theory; network models for clinical psychology; the stop-signal paradigm; fmri; neural recordings; open science.




Multisensory Processes


Book Description

Auditory behavior, perception, and cognition are all shaped by information from other sensory systems. This volume examines this multi-sensory view of auditory function at levels of analysis ranging from the single neuron to neuroimaging in human clinical populations. Visual Influence on Auditory Perception Adrian K.C. Lee and Mark T. Wallace Cue Combination within a Bayesian Framework David Alais and David Burr Toward a Model of Auditory-Visual Speech Intelligibility Ken W. Grant and Joshua G. W. Bernstein An Object-based Interpretation of Audiovisual Processing Adrian K.C. Lee, Ross K. Maddox, and Jennifer K. Bizley Hearing in a "Moving" Visual World: Coordinate Transformations Along the Auditory Pathway Shawn M. Willett, Jennifer M. Groh, Ross K. Maddox Multisensory Processing in the Auditory Cortex Andrew J. King, Amy Hammond-Kenny, Fernando R. Nodal Audiovisual Integration in the Primate Prefrontal Cortex Bethany Plakke and Lizabeth M. Romanski Using Multisensory Integration to Understand Human Auditory Cortex Michael S. Beauchamp Combining Voice and Face Content in the Primate Temporal Lobe Catherine Perrodin and Christopher I. Petkov Neural Network Dynamics and Audiovisual Integration Julian Keil and Daniel Senkowski Cross-Modal Learning in the Auditory System Patrick Bruns and Brigitte Röder Multisensory Processing Differences in Individuals with Autism Spectrum Disorder Sarah H. Baum Miller, Mark T. Wallace Adrian K.C. Lee is Associate Professor in the Department of Speech & Hearing Sciences and the Institute for Learning and Brain Sciences at the University of Washington, Seattle Mark T. Wallace is the Louise B McGavock Endowed Chair and Professor in the Departments of Hearing and Speech Sciences, Psychiatry, Psychology and Director of the Vanderbilt Brain Institute at Vanderbilt University, Nashville Allison B. Coffin is Associate Professor in the Department of Integrative Physiology and Neuroscience at Washington State University, Vancouver, WA Arthur N. Popper is Professor Emeritus and research professor in the Department of Biology at the University of Maryland, College Park Richard R. Fay is Distinguished Research Professor of Psychology at Loyola University, Chicago.




The Neural Bases of Multisensory Processes


Book Description

It has become accepted in the neuroscience community that perception and performance are quintessentially multisensory by nature. Using the full palette of modern brain imaging and neuroscience methods, The Neural Bases of Multisensory Processes details current understanding in the neural bases for these phenomena as studied across species, stages




Multisensory Development


Book Description

We perceive and understand our environment using many sensory systems-vision, touch, hearing, taste, smell, and proprioception. These multiple sensory modalities give us complementary sources of information about the environment. This book explores how we develop the ability to integrate our senses.