Multistage Interconnection Network Design for Engineers


Book Description

This textbook provides a quick and easy understanding of multistage interconnection networks (MINs) for engineers. The book contents focus on the design, performance metrics, and evaluation of these networks which are crucial in modern computer architecture. The contents equip engineering students, apprentices and professionals with in-depth knowledge and analysis of MINS, enabling them to build complex computer architectures for efficient data communications and cost effective solutions for circuit design. The book starts with an introduction to MINS and subsequently progresses to the evaluation of a range of MINS (SEN, Gamma-Minus, FTSN, FTGN, SEGIN). Key highlights of the book include: · Easy to understand notes on design, reliability and fault tolerance · Covers a wide range of MIN types with notes on design variants · Supplementary information aiding comprehension of the main content. · A curated list of references for further exploration and deeper understanding.




Multistage Interconnection Networks for Switching Fabric Designs


Book Description

Multistage interconnection networks (MINs) can be designed for parallel computing and switching fabrics. Multistage sorting networks can be one of the many applications using interconnection networks. In this monograph, the generalized odd-even merge design is discussed in detail. Designing switching network is another important application of the multistage networks. Generally, interconnection network can be blocking, rearrangeably nonblocking, or nonblocking, or with variable connecting capabilities, from rearrangeable for permutation to nonblocking for multicast services. Novel multistage switching fabric designs, the PINIUM and PINIUM+ switches, for packet switching and multicasting are discussed. A novel switching framework of high-performance hardware schedulers for various buffering techniques based on interconnection networks are discussed.




Interconnection Networks


Book Description

Foreword -- Foreword to the First Printing -- Preface -- Chapter 1 -- Introduction -- Chapter 2 -- Message Switching Layer -- Chapter 3 -- Deadlock, Livelock, and Starvation -- Chapter 4 -- Routing Algorithms -- Chapter 5 -- CollectiveCommunicationSupport -- Chapter 6 -- Fault-Tolerant Routing -- Chapter 7 -- Network Architectures -- Chapter 8 -- Messaging Layer Software -- Chapter 9 -- Performance Evaluation -- Appendix A -- Formal Definitions for Deadlock Avoidance -- Appendix B -- Acronyms -- References -- Index.




Crossbar-Based Interconnection Networks


Book Description

This unique text/reference provides an overview of crossbar-based interconnection networks, offering novel perspectives on these important components of high-performance, parallel-processor systems. A particular focus is placed on solutions to the blocking and scalability problems. Topics and features: introduces the fundamental concepts in interconnection networks in multi-processor systems, including issues of blocking, scalability, and crossbar networks; presents a classification of interconnection networks, and provides information on recognizing each of the networks; examines the challenges of blocking and scalability, and analyzes the different solutions that have been proposed; reviews a variety of different approaches to improve fault tolerance in multistage interconnection networks; discusses the scalable crossbar network, which is a non-blocking interconnection network that uses small-sized crossbar switches as switching elements. This invaluable work will be of great benefit to students, researchers and practitioners interested in computer networks, parallel processing and reliability engineering. The text is also essential reading for course modules on interconnection network design and reliability.




Nonblocking Electronic and Photonic Switching Fabrics


Book Description

Surveys recent advances in combinatorial properties of switching fabrics Written by an expert in the area of switching fabrics




Design And Analysis Of Reliable And Fault-tolerant Computer Systems


Book Description

Covering both the theoretical and practical aspects of fault-tolerant mobile systems, and fault tolerance and analysis, this book tackles the current issues of reliability-based optimization of computer networks, fault-tolerant mobile systems, and fault tolerance and reliability of high speed and hierarchical networks.The book is divided into six parts to facilitate coverage of the material by course instructors and computer systems professionals. The sequence of chapters in each part ensures the gradual coverage of issues from the basics to the most recent developments. A useful set of references, including electronic sources, is listed at the end of each chapter./a




Interconnection Network Reliability Evaluation


Book Description

Keeping in view the growth of the technological frontiers, there is always a need for the development of reliable, fault tolerant and cost- effective interconnection networks (INs) which are the critical metrics to achieve the goal of parallelism. The main objective of this book is to design new fault tolerant interconnection network layouts capable of path redundancy among dynamic failures. New INs designs are proposed and their observed results are found promising when compared with some of the earlier networks. The book also covers the reliability evaluation of various industrial network topologies considering multiple reliability performance parameters (2-TR, broadcast and ATR). Finally, the book also focuses on reliability evaluation and comparison of various topologies considering connectivity among multiple sources and multiple destinations (MSMT) nodes.




Next Generation Optical Network Design and Modelling


Book Description

Optical networks are leaving the labs and becoming a reality. Despite the current crisis of the telecom industry, our everyday life increasingly depends on communication networks for information exchange, medicine, education, data transfer, commerce, and many other endeavours. High capacity links are required by the large futemet traffic demand, and optical networks remain one of the most promising technologies for meeting these needs. WDM systems are today widely deployed, thanks to low-cost at extreme data rates and high reliability of optical components, such as optical amplifiers and fixed/tunable filters and transceivers. Access and metropolitan area networks are increasingly based on optical technologies to overcome the electronic bottleneck at the network edge. Traditional multi-layer architectures, such as the widely deployed IP/ATM/SDH protocol stack, are increasingly based on WDM transport; further efforts are sought to move at the optical layer more of the functionalities available today in higher protocol layers. New components and subsystems for very high speed optical networks offer new design opportunities to network operators and designers. The trends towards dynamically configurable all-optical network infrastructures open up a wide range of new network engineering and design choices, which must face issues such as interoperability and unified control and management.




Designing Network On-Chip Architectures in the Nanoscale Era


Book Description

Going beyond isolated research ideas and design experiences, Designing Network On-Chip Architectures in the Nanoscale Era covers the foundations and design methods of network on-chip (NoC) technology. The contributors draw on their own lessons learned to provide strong practical guidance on various design issues.Exploring the design process of the




Design and Testing of Reversible Logic


Book Description

The book compiles efficient design and test methodologies for the implementation of reversible logic circuits. The methodologies covered in the book are design approaches, test approaches, fault tolerance in reversible circuits and physical implementation techniques. The book also covers the challenges and the reversible logic circuits to meet these challenges stimulated during each stage of work cycle. The novel computing paradigms are being explored to serve as a basis for fast and low power computation.