An Introduction to Stochastic Modeling


Book Description

An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.




Multi-State Survival Models for Interval-Censored Data


Book Description

Multi-State Survival Models for Interval-Censored Data introduces methods to describe stochastic processes that consist of transitions between states over time. It is targeted at researchers in medical statistics, epidemiology, demography, and social statistics. One of the applications in the book is a three-state process for dementia and survival in the older population. This process is described by an illness-death model with a dementia-free state, a dementia state, and a dead state. Statistical modelling of a multi-state process can investigate potential associations between the risk of moving to the next state and variables such as age, gender, or education. A model can also be used to predict the multi-state process. The methods are for longitudinal data subject to interval censoring. Depending on the definition of a state, it is possible that the time of the transition into a state is not observed exactly. However, when longitudinal data are available the transition time may be known to lie in the time interval defined by two successive observations. Such an interval-censored observation scheme can be taken into account in the statistical inference. Multi-state modelling is an elegant combination of statistical inference and the theory of stochastic processes. Multi-State Survival Models for Interval-Censored Data shows that the statistical modelling is versatile and allows for a wide range of applications.




Earthquake Statistical Analysis through Multi-state Modeling


Book Description

Earthquake occurrence modeling is a rapidly developing research area. This book deals with its critical issues, ranging from theoretical advances to practical applications. The introductory chapter outlines state-of-the-art earthquake modeling approaches based on stochastic models. Chapter 2 presents seismogenesis in association with the evolving stress field. Chapters 3 to 5 present earthquake occurrence modeling by means of hidden (semi-)Markov models and discuss associated characteristic measures and relative estimation aspects. Further comparisons, the most important results and our concluding remarks are provided in Chapters 6 and 7.




Multistate Models for the Analysis of Life History Data


Book Description

Multistate Models for the Analysis of Life History Data provides the first comprehensive treatment of multistate modeling and analysis, including parametric, nonparametric and semiparametric methods applicable to many types of life history data. Special models such as illness-death, competing risks and progressive processes are considered, as well as more complex models. The book provides both theoretical development and illustrations of analysis based on data from randomized trials and observational cohort studies in health research. It features: Discusses a wide range of applications of multistate models, Presents methods for both continuously and intermittently observed life history processes, Gives a thorough discussion of conditionally independent censoring and observation processes, Discusses models with random effects and joint models for two or more multistate processes, Discusses and illustrates software for multistate analysis that is available in R, Target audience includes those engaged in research and applications involving multistate models.




Flowgraph Models for Multistate Time-to-Event Data


Book Description

A unique introduction to the innovative methodology of statisticalflowgraphs This book offers a practical, application-based approach toflowgraph models for time-to-event data. It clearly shows how thisinnovative new methodology can be used to analyze data fromsemi-Markov processes without prior knowledge of stochasticprocesses--opening the door to interesting applications in survivalanalysis and reliability as well as stochastic processes. Unlike other books on multistate time-to-event data, this workemphasizes reliability and not just biostatistics, illustratingeach method with medical and engineering examples. It demonstrateshow flowgraphs bring together applied probability techniques andcombine them with data analysis and statistical methods to answerquestions of practical interest. Bayesian methods of data analysisare emphasized. Coverage includes: * Clear instructions on how to model multistate time-to-event datausing flowgraph models * An emphasis on computation, real data, and Bayesian methods forproblem solving * Real-world examples for analyzing data from stochasticprocesses * The use of flowgraph models to analyze complex stochasticnetworks * Exercise sets to reinforce the practical approach of thisvolume Flowgraph Models for Multistate Time-to-Event Data is an invaluableresource/reference for researchers in biostatistics/survivalanalysis, systems engineering, and in fields that use stochasticprocesses, including anthropology, biology, psychology, computerscience, and engineering.




Models for Multi-State Survival Data


Book Description

Multi-state models provide a statistical framework for studying longitudinal data on subjects when focus is on the occurrence of events that the subjects may experience over time. They find application particularly in biostatistics, medicine, and public health. The book includes mathematical detail which can be skipped by readers more interested in the practical examples. It is aimed at biostatisticians and at readers with an interest in the topic having a more applied background, such as epidemiology. This book builds on several courses the authors have taught on the subject. Key Features: · Intensity-based and marginal models. · Survival data, competing risks, illness-death models, recurrent events. · Includes a full chapter on pseudo-values. · Intuitive introductions and mathematical details. · Practical examples of event history data. · Exercises. Software code in R and SAS and the data used in the book can be found on the book’s webpage.




Competing Risks and Multistate Models with R


Book Description

This book covers competing risks and multistate models, sometimes summarized as event history analysis. These models generalize the analysis of time to a single event (survival analysis) to analysing the timing of distinct terminal events (competing risks) and possible intermediate events (multistate models). Both R and multistate methods are promoted with a focus on nonparametric methods.




The Econometric Analysis of Transition Data


Book Description

This book presents statistical methods for analysis of the duration of events. The primary focus is on models for single-spell data, events in which individual agents are observed for a single duration. Some attention is also given to multiple-spell data. The first part of the book covers model specification, including both structural and reduced form models and models with and without neglected heterogeneity. The book next deals with likelihood based inference about such models, with sections on full and semiparametric specification. A final section treats graphical and numerical methods of specification testing. This is the first published exposition of current econometric methods for the study of duration data.




Stochastic Modelling of Social Processes


Book Description

Stochastic Modelling of Social Processes provides information pertinent to the development in the field of stochastic modeling and its applications in the social sciences. This book demonstrates that stochastic models can fulfill the goals of explanation and prediction. Organized into nine chapters, this book begins with an overview of stochastic models that fulfill normative, predictive, and structural–analytic roles with the aid of the theory of probability. This text then examines the study of labor market structures using analysis of job and career mobility, which is one of the approaches taken by sociologists in research on the labor market. Other chapters consider the characteristic trends and patterns from data on divorces. This book discusses as well the two approaches of stochastic modeling of social processes, namely competing risk models and semi-Markov processes. The final chapter deals with the practical application of regression models of survival data. This book is a valuable resource for social scientists and statisticians.