Multitemporal Remote Sensing


Book Description

Written by world renowned scientists, this book provides an excellent overview of a wide array of methods and techniques for the processing and analysis of multitemporal remotely sensed images. These methods and techniques include change detection, multitemporal data fusion, coarse-resolution time series processing, and interferometric SAR multitemporal processing, among others. A broad range of multitemporal datasets are used in their methodology demonstrations and application examples, including multispectral, hyperspectral, SAR and passive microwave data. This book features a variety of application examples covering both land and aquatic environments. Land applications include urban, agriculture, habitat disturbance, vegetation dynamics, soil moisture, land surface albedo, land surface temperature, glacier and disaster recovery. Aquatic applications include monitoring water quality, water surface areas and water fluctuation in wetland areas, spatial distribution patterns and temporal fluctuation trends of global land surface water, as well as evaluation of water quality in several coastal and marine environments. This book will help scientists, practitioners, students gain a greater understanding of how multitemporal remote sensing could be effectively used to monitor our changing planet at local, regional, and global scales.




Multitemporal Remote Sensing


Book Description

Written by world renowned scientists, this book provides an excellent overview of a wide array of methods and techniques for the processing and analysis of multitemporal remotely sensed images. These methods and techniques include change detection, multitemporal data fusion, coarse-resolution time series processing, and interferometric SAR multitemporal processing, among others. A broad range of multitemporal datasets are used in their methodology demonstrations and application examples, including multispectral, hyperspectral, SAR and passive microwave data. This book features a variety of application examples covering both land and aquatic environments. Land applications include urban, agriculture, habitat disturbance, vegetation dynamics, soil moisture, land surface albedo, land surface temperature, glacier and disaster recovery. Aquatic applications include monitoring water quality, water surface areas and water fluctuation in wetland areas, spatial distribution patterns and temporal fluctuation trends of global land surface water, as well as evaluation of water quality in several coastal and marine environments. This book will help scientists, practitioners, students gain a greater understanding of how multitemporal remote sensing could be effectively used to monitor our changing planet at local, regional, and global scales.




Analysis Of Multi-temporal Remote Sensing Images, Proceedings Of The Second International Workshop On The Multitemp 2003


Book Description

The development of effective methodologies for the analysis of multi-temporal data is one of the most important and challenging issues that the remote sensing community will face in the coming years. Its importance and timeliness are directly related to the ever-increasing quantity of multi-temporal data provided by the numerous remote sensing satellites that orbit our planet. The synergistic use of multi-temporal remote sensing data and advanced analysis methodologies results in the possibility of solving complex problems related to the monitoring of the Earth's surface and atmosphere at different scales. However, the advances in the methodologies for the analysis of multi-temporal data have been significantly under-illuminated with respect to other remote sensing data analysis topics. In addition, the link between the end-users' needs and the scientific community needs to be strengthened.This volume of proceedings contains 43 contributions from researchers representing academia, industry and governmental organizations. It is organized into three thematic sections: Image Analysis and Algorithms; Analysis of Synthetic Aperture Radar Data; Monitoring and Management of Resources.




Change Detection and Image Time-Series Analysis 1


Book Description

Change Detection and Image Time Series Analysis 1 presents a wide range of unsupervised methods for temporal evolution analysis through the use of image time series associated with optical and/or synthetic aperture radar acquisition modalities. Chapter 1 introduces two unsupervised approaches to multiple-change detection in bi-temporal multivariate images, with Chapters 2 and 3 addressing change detection in image time series in the context of the statistical analysis of covariance matrices. Chapter 4 focuses on wavelets and convolutional-neural filters for feature extraction and entropy-based anomaly detection, and Chapter 5 deals with a number of metrics such as cross correlation ratios and the Hausdorff distance for variational analysis of the state of snow. Chapter 6 presents a fractional dynamic stochastic field model for spatio temporal forecasting and for monitoring fast-moving meteorological events such as cyclones. Chapter 7 proposes an analysis based on characteristic points for texture modeling, in the context of graph theory, and Chapter 8 focuses on detecting new land cover types by classification-based change detection or feature/pixel based change detection. Chapter 9 focuses on the modeling of classes in the difference image and derives a multiclass model for this difference image in the context of change vector analysis.




Urban Remote Sensing


Book Description

Urban Remote Sensing The second edition of Urban Remote Sensing is a state-of-the-art review of the latest progress in the subject. The text examines how evolving innovations in remote sensing allow to deliver the critical information on cities in a timely and cost-effective way to support various urban management activities and the scientific research on urban morphology, socio-environmental dynamics, and sustainability. Chapters are written by leading scholars from a variety of disciplines including remote sensing, GIS, geography, urban planning, environmental science, and sustainability science, with case studies predominately drawn from North America and Europe. A review of the essential and emerging research areas in urban remote sensing including sensors, techniques, and applications, especially some critical issues that are shifting the ­directions in urban remote sensing research. Illustrated in full color throughout, including numerous relevant case studies and extensive discussions of important concepts and cutting-edge technologies to enable clearer understanding for non-technical audiences. Urban Remote Sensing, Second Edition will be of particular interest to upper-division undergraduate and graduate students, researchers and professionals working in the fields of remote sensing, geospatial information, and urban & environmental planning.




Analysis Of Multi-temporal Remote Sensing Images - Proceedings Of The First International Workshop On Multitemp 2001


Book Description

The development of effective methodologies for the analysis of multi-temporal data is one of the most important and challenging issues that the remote sensing community will face in the next few years. The relevance and timeliness of this issue are directly related to the ever-increasing quantity of multi-temporal data provided by the numerous remote sensing satellites that orbit our planet. The synergistic use of multi-temporal remote sensing data and advanced analysis methodologies results in the possibility of solving complex problems related to the monitoring of the Earth's surface and atmosphere.This book brings together the methodological aspects of multi-temporal remote sensing image analysis, real applications and end-user requirements, presenting the state of the art in this field and contributing to the definition of common research priorities. Researchers and graduate students in the fields of remote sensing, image analysis, and environmental monitoring will appreciate the interdisciplinary approach thanks to the articles written by experts from different scientific communities.




Frontiers of Remote Sensing Information Processing


Book Description

Written by leaders in the field of remote sensing information processing, this book covers the frontiers of remote sensors, especially with effective algorithms for signal/image processing and pattern recognition with remote sensing data. Sensor and data fusion issues, SAR images, hyperspectral images, and related special topics are also examined. Techniques making use of neural networks, wavelet transforms, and knowledge-based systems are emphasized. A special set of three chapters is devoted to seismic analysis and discrimination. In summary, the book provides an authoritative treatment of major topics in remote sensing information processing and defines new frontiers for these areas. Contents: Data Mining; SAR Image Processing; Wavelet Analysis and Applications; Military Applications of Remote Sensing; Microwave Remote Sensing; Statistical Pattern Recognition; Automatic Target Segmentation; Neural Networks; Change Detection; Seismic Signal Processing; Time Series Prediction; Image Compression; Emerging Topics. Readership: Engineers and scientists dealing with remote sensing data in particular, and signals and images in general; computer scientists involved in software development on geophysical data analysis.




Advanced Remote Sensing


Book Description

Advanced Remote Sensing is an application-based reference that provides a single source of mathematical concepts necessary for remote sensing data gathering and assimilation. It presents state-of-the-art techniques for estimating land surface variables from a variety of data types, including optical sensors such as RADAR and LIDAR. Scientists in a number of different fields including geography, geology, atmospheric science, environmental science, planetary science and ecology will have access to critically-important data extraction techniques and their virtually unlimited applications. While rigorous enough for the most experienced of scientists, the techniques are well designed and integrated, making the book's content intuitive, clearly presented, and practical in its implementation. - Comprehensive overview of various practical methods and algorithms - Detailed description of the principles and procedures of the state-of-the-art algorithms - Real-world case studies open several chapters - More than 500 full-color figures and tables - Edited by top remote sensing experts with contributions from authors across the geosciences




Remote Sensing Imagery


Book Description

Dedicated to remote sensing images, from their acquisition to their use in various applications, this book covers the global lifecycle of images, including sensors and acquisition systems, applications such as movement monitoring or data assimilation, and image and data processing. It is organized in three main parts. The first part presents technological information about remote sensing (choice of satellite orbit and sensors) and elements of physics related to sensing (optics and microwave propagation). The second part presents image processing algorithms and their specificities for radar or optical, multi and hyper-spectral images. The final part is devoted to applications: change detection and analysis of time series, elevation measurement, displacement measurement and data assimilation. Offering a comprehensive survey of the domain of remote sensing imagery with a multi-disciplinary approach, this book is suitable for graduate students and engineers, with backgrounds either in computer science and applied math (signal and image processing) or geo-physics. About the Authors Florence Tupin is Professor at Telecom ParisTech, France. Her research interests include remote sensing imagery, image analysis and interpretation, three-dimensional reconstruction, and synthetic aperture radar, especially for urban remote sensing applications. Jordi Inglada works at the Centre National d’Études Spatiales (French Space Agency), Toulouse, France, in the field of remote sensing image processing at the CESBIO laboratory. He is in charge of the development of image processing algorithms for the operational exploitation of Earth observation images, mainly in the field of multi-temporal image analysis for land use and cover change. Jean-Marie Nicolas is Professor at Telecom ParisTech in the Signal and Imaging department. His research interests include the modeling and processing of synthetic aperture radar images.




Handbook of Mathematical Geosciences


Book Description

This Open Access handbook published at the IAMG's 50th anniversary, presents a compilation of invited path-breaking research contributions by award-winning geoscientists who have been instrumental in shaping the IAMG. It contains 45 chapters that are categorized broadly into five parts (i) theory, (ii) general applications, (iii) exploration and resource estimation, (iv) reviews, and (v) reminiscences covering related topics like mathematical geosciences, mathematical morphology, geostatistics, fractals and multifractals, spatial statistics, multipoint geostatistics, compositional data analysis, informatics, geocomputation, numerical methods, and chaos theory in the geosciences.