Multivariable Calculus with Vectors


Book Description

This text is for the third semester or fourth and fifth quarters of calculus; i.e., for multivariable or vector calculus courses. This text presents a conceptual underpinning for multivariable calculus that is as natural and intuitively simple as possible. More than its competitors, this book focuses on modeling physical phenomena, especially from physics and engineering, and on developing geometric intuition.




An Illustrative Guide to Multivariable and Vector Calculus


Book Description

This textbook focuses on one of the most valuable skills in multivariable and vector calculus: visualization. With over one hundred carefully drawn color images, students who have long struggled picturing, for example, level sets or vector fields will find these abstract concepts rendered with clarity and ingenuity. This illustrative approach to the material covered in standard multivariable and vector calculus textbooks will serve as a much-needed and highly useful companion. Emphasizing portability, this book is an ideal complement to other references in the area. It begins by exploring preliminary ideas such as vector algebra, sets, and coordinate systems, before moving into the core areas of multivariable differentiation and integration, and vector calculus. Sections on the chain rule for second derivatives, implicit functions, PDEs, and the method of least squares offer additional depth; ample illustrations are woven throughout. Mastery Checks engage students in material on the spot, while longer exercise sets at the end of each chapter reinforce techniques. An Illustrative Guide to Multivariable and Vector Calculus will appeal to multivariable and vector calculus students and instructors around the world who seek an accessible, visual approach to this subject. Higher-level students, called upon to apply these concepts across science and engineering, will also find this a valuable and concise resource.




Calculus with Vectors


Book Description

Calculus with Vectors grew out of a strong need for a beginning calculus textbook for undergraduates who intend to pursue careers in STEM fields. The approach introduces vector-valued functions from the start, emphasizing the connections between one-variable and multi-variable calculus. The text includes early vectors and early transcendentals and includes a rigorous but informal approach to vectors. Examples and focused applications are well presented along with an abundance of motivating exercises. The approaches taken to topics such as the derivation of the derivatives of sine and cosine, the approach to limits and the use of "tables" of integration have been modified from the standards seen in other textbooks in order to maximize the ease with which students may comprehend the material. Additionally, the material presented is intentionally non-specific to any software or hardware platform in order to accommodate the wide variety and rapid evolution of tools used. Technology is referenced in the text and is required for a good number of problems.







Vector Analysis Versus Vector Calculus


Book Description

The aim of this book is to facilitate the use of Stokes' Theorem in applications. The text takes a differential geometric point of view and provides for the student a bridge between pure and applied mathematics by carefully building a formal rigorous development of the topic and following this through to concrete applications in two and three variables. Key topics include vectors and vector fields, line integrals, regular k-surfaces, flux of a vector field, orientation of a surface, differential forms, Stokes' theorem, and divergence theorem. This book is intended for upper undergraduate students who have completed a standard introduction to differential and integral calculus for functions of several variables. The book can also be useful to engineering and physics students who know how to handle the theorems of Green, Stokes and Gauss, but would like to explore the topic further.




Vector Calculus


Book Description

Vector calculus is the fundamental language of mathematical physics. It pro vides a way to describe physical quantities in three-dimensional space and the way in which these quantities vary. Many topics in the physical sciences can be analysed mathematically using the techniques of vector calculus. These top ics include fluid dynamics, solid mechanics and electromagnetism, all of which involve a description of vector and scalar quantities in three dimensions. This book assumes no previous knowledge of vectors. However, it is assumed that the reader has a knowledge of basic calculus, including differentiation, integration and partial differentiation. Some knowledge of linear algebra is also required, particularly the concepts of matrices and determinants. The book is designed to be self-contained, so that it is suitable for a pro gramme of individual study. Each of the eight chapters introduces a new topic, and to facilitate understanding of the material, frequent reference is made to physical applications. The physical nature of the subject is clarified with over sixty diagrams, which provide an important aid to the comprehension of the new concepts. Following the introduction of each new topic, worked examples are provided. It is essential that these are studied carefully, so that a full un derstanding is developed before moving ahead. Like much of mathematics, each section of the book is built on the foundations laid in the earlier sections and chapters.




Multivariable Mathematics


Book Description

Multivariable Mathematics combines linear algebra and multivariable mathematics in a rigorous approach. The material is integrated to emphasize the recurring theme of implicit versus explicit that persists in linear algebra and analysis. In the text, the author includes all of the standard computational material found in the usual linear algebra and multivariable calculus courses, and more, interweaving the material as effectively as possible, and also includes complete proofs. * Contains plenty of examples, clear proofs, and significant motivation for the crucial concepts. * Numerous exercises of varying levels of difficulty, both computational and more proof-oriented. * Exercises are arranged in order of increasing difficulty.




Multivariable and Vector Calculus


Book Description

This book is designed primarily for undergraduates in mathematics, engineering, and the physical sciences. Rather than concentrating on technical skills, it focuses on a deeper understanding of the subject by providing many unusual and challenging examples. The basic topics of vector geometry, differentiation and integration in several variables are explored. Furthermore, it can be used to impower the mathematical knowledge for Artificial Intelligence (AI) concepts. It also provides numerous computer illustrations and tutorials using MATLAB® and Maple®, that bridge the gap between analysis and computation. Partial solutions and instructor ancillaries available for use as a textbook. FEATURES Includes numerous computer illustrations and tutorials using MATLAB®and Maple® Covers the major topics of vector geometry, differentiation, and integration in several variables Instructors’ ancillaries available upon adoption




Algebra: Chapter 0


Book Description

Algebra: Chapter 0 is a self-contained introduction to the main topics of algebra, suitable for a first sequence on the subject at the beginning graduate or upper undergraduate level. The primary distinguishing feature of the book, compared to standard textbooks in algebra, is the early introduction of categories, used as a unifying theme in the presentation of the main topics. A second feature consists of an emphasis on homological algebra: basic notions on complexes are presented as soon as modules have been introduced, and an extensive last chapter on homological algebra can form the basis for a follow-up introductory course on the subject. Approximately 1,000 exercises both provide adequate practice to consolidate the understanding of the main body of the text and offer the opportunity to explore many other topics, including applications to number theory and algebraic geometry. This will allow instructors to adapt the textbook to their specific choice of topics and provide the independent reader with a richer exposure to algebra. Many exercises include substantial hints, and navigation of the topics is facilitated by an extensive index and by hundreds of cross-references.




Vector Algebra and Calculus


Book Description

The Present Book Aims At Providing A Detailed Account Of The Basic Concepts Of Vectors That Are Needed To Build A Strong Foundation For A Student Pursuing Career In Mathematics. These Concepts Include Addition And Multiplication Of Vectors By Scalars, Centroid, Vector Equations Of A Line And A Plane And Their Application In Geometry And Mechanics, Scalar And Vector Product Of Two Vectors, Differential And Integration Of Vectors, Differential Operators, Line Integrals, And Gauss S And Stoke S Theorems.It Is Primarily Designed For B.Sc And B.A. Courses, Elucidating All The Fundamental Concepts In A Manner That Leaves No Scope For Illusion Or Confusion. The Numerous High-Graded Solved Examples Provided In The Book Have Been Mainly Taken From The Authoritative Textbooks And Question Papers Of Various University And Competitive Examinations Which Will Facilitate Easy Understanding Of The Various Skills Necessary In Solving The Problems. In Addition, These Examples Will Acquaint The Readers With The Type Of Questions Usually Set At The Examinations. Furthermore, Practice Exercises Of Multiple Varieties Have Also Been Given, Believing That They Will Help In Quick Revision And In Gaining Confidence In The Understanding Of The Subject. Answers To These Questions Have Been Verified Thoroughly. It Is Hoped That A Thorough Study Of This Book Would Enable The Students Of Mathematics To Secure High Marks In The Examinations. Besides Students, The Teachers Of The Subject Would Also Find It Useful In Elucidating Concepts To The Students By Following A Number Of Possible Tracks Suggested In The Book.