Muon Physics


Book Description

Muon Physics, Volume I: Electromagnetic Interactions deals with the electromagnetic interaction of muon as well as its static properties. The validity tests of quantum electrodynamics (QED) in the simple muonic system such as muonium, muonic hydrogen, and heavier muonic atoms are discussed. Possible tests of QED at much higher energy and large momentum transfers are also considered. An explanation of the unified gauge theories of electromagnetic and weak interactions in very simple and easily understandable terms is included as well. This volume is comprised of four chapters and begins with a historical overview of the muon, from its discovery and that of p and μ mesons to advances in understanding the vital roles played by the muon in almost every field of physics. The next chapter explores the electromagnetic properties of the muon and looks at experimental and theoretical developments concerning its static properties and electromagnetic interactions. The third chapter is concerned with the physics of the muonic atom and describes experimental methods for investigating the production of muonic atoms; charge distribution in spherical nuclei; the density of electrons in the atom; electric quadrupole and magnetic dipole interactions between the muon and the nucleus; and intensities of muonic transitions. The final chapter is devoted to cosmic-ray muons and emphasizes the character of very high-energy nucleon-nucleon interactions, together with the properties of the electromagnetic and weak interactions at very high energies. This book is written primarily for physicists as well as students and researchers in physics.




The Future of Muon Physics


Book Description

This volume comprises a collection of invited papers presented at the interna tional symposium "The Future of Muon Physics", May 7-9 1991, at the Ruprecht Karls-Universitat in Heidelberg. In the inspiring atmosphere of the Internationales Wissenschaftsforum researchers working worldwide at universities and at many inter national accelerator centers came together to review the present status of the field and to discuss the future directions in muon physics. The muon, charged lepton of the second generation, was first oberved some sixty years ago~ Despite many efforts since, the reason for its existence still remains a secret to the scientific community challenging both theorists and experimentalists. In modern physics the muon plays a key role in many topics of research. Atomic physics with negative muons provides excellent tests of the theory of quantum electrodynamics and of the electro-weak interaction and probes nuclear properties. The. purely leptonic hydrogen-like muonium atom allows tests of fun damental laws in physics and the determination of precise values for fundamental constants. New measurements of the anomalous magnetic moment of the muon will probe the renormalizability of the weak interaction and will be sensitive to physics beyond the standard model. The muon decay is the most carefully studied weak process. Searches for rare decay modes of muons and for the conversion of muonium to antimuonium examine the lepton number conservation laws and new speculative theories. Nuclear muon capture addresses fundamental questions like tests of the CPT theorem.




Muon Science


Book Description

Muon science is rapidly assuming a central role in scientific and technological studies of the solid state within the disciplines of physics, chemistry, and materials science. Muon Science: Muons in Physics, Chemistry and Materials presents key developments in both theoretical and experimental aspects of muon spin relaxation, rotation, and resonance. Assuming no prior expertise in muon science, the book guides readers from introductory material to the latest developments in the field. The internationally renowned expert contributors cover topics in muon instrumentation and muon science applications that include muon production, beamlines and instrumentation, muonium chemistry, muon catalyzed fusion, fundamental muon physics, ultra-cold muons, magnetism, superconductivity, diffusion, semiconductors, simulations, and data analysis. The book maintains consistent notation and nomenclature throughout as well as cross-referencing and continuity between the contributions. It provides an excellent introduction to both new and experienced muon beam scientists and graduate students wishing to develop their knowledge and understanding of the subject.




Introductory Muon Science


Book Description

Muons are unstable elementary particles that are found in space, which can also be produced in particle accelerators to an intensity a billion times greater than that occurring naturally. This book describes the various applications of muons across the spectrum of the sciences and engineering. Scientific research using muons relies both on their basic properties as well as the microscopic interaction between them and surrounding particles such as nuclei, electrons, atoms and molecules. Examples of research that can be carried out using muons include muon catalysis for nuclear fusion, the application of muon spin probes to study microscopic magnetic properties of advanced materials, electron labelling to help in the understanding of electron transfer in proteins, and non-destructive element analysis of the human body. Cosmic ray muons can also be used to study the inner structure of volcanoes.




Muon Physics


Book Description

Muon plays an important role in elementary particle, nuclear and atomic physics. Muon was discovered in 1936 in cosmic radiation. At present, it is very important in the framework of the Standard Model. With the discovery of a charm quantum number, muon and the accompanying muon neutrino play an important role in the quark-lepton model of elementary particles being combined in the second generation of the Standard Model. Muonic processes provide important information on the low energy limit of the weak interaction. This book describes the various aspects of muon physics, taking into account the most recent experiments conducted.




Modern Muon Physics


Book Description

"Muon plays an increasingly important role in particle, nuclear, and atomic physics, and in applied research. The muon with the muon neutrino and strange and charm quarks create second generation of the Standard Model particles. Unique properties of muons, including its electric charge, mass, and lack of interaction via strong force made this particle a unique tool for discoveries of new elementary particles, including the Higgs boson, over last half a century. The prompt (by cascade transitions) and delayed (by weak muon capture) fission of heavy nuclei in muonic atoms became an important aspect of research. Use of muons as a probe particle to study various solid state samples recently developed in a separate branch of science. Muons can be used in the cold fusion for efficient energy production in the future. The studies of the processes beyond the Standard Model, the proton radius puzzle, the rare decays of the muon and its conversion into an electron and muonium into antimuonium, and hints of a difference in the anomalous magnetic moment of the muon from predicted by the Standard Model, have become hot research topics. Muons are proposed to be used in accelerators providing ultra high intensity neutrino beams which will be used for studies of neutrinos, including their oscillations, which could shed a light on matter-antimatter universe asymmetry as well as for "Higgs factories" where a large number of Higgs bosons can be produced for in depth understanding of this recently discovered particle. This book describes various aspects of modern physics involving muons"--




Muon Physics V3


Book Description

Muon Physics, Volume III: Chemistry and Solids explores muon chemistry and muons in matter, with emphasis on positive muons and muonium in matter; mesomolecular processes induced by muons; and depolarization of negative muons. The interaction of muonic atoms with the medium is also discussed. This volume is comprised of a single chapter divided into three sections and begins with a discussion on the interactions of positive muons and muonium with matter, especially their precession, depolarization, deceleration, and thermalization. A phenomenological description of the production and behavior of polarized positive muons is offered, and the qualitative behavior of the muon spin in muonium is considered along with its evolution in quasi-free muonium. The next section focuses on mesomolecular processes induced by mesons, paying particular attention to successive stages of stopping and absorption of negative mesons. The results of an experimental study of mesoatomic and mesomolecular processes in hydrogen are presented, together with theoretical calculations. Finally, the depolarization of negative muons and the interaction of muonic atoms with the medium are discussed. This book is written primarily for physicists as well as students and researchers in physics.




The Anomalous Magnetic Moment of the Muon


Book Description

This book reviews the present state of knowledge of the anomalous magnetic moment a=(g-2)/2 of the muon. The muon anomalous magnetic moment is one of the most precisely measured quantities in elementary particle physics and provides one of the most stringent tests of relativistic quantum field theory as a fundamental theoretical framework. It allows for an extremely precise check of the standard model of elementary particles and of its limitations.




Muon Spin Rotation, Relaxation, and Resonance


Book Description

Intended for graduate students and researchers who plan to use the muon spin rotation and relaxation techniques. A comprehensive discussion of the information extracted from measurements on magnetic and superconductor materials. The muonium centres as well as the muon and muonium diffusion in materials are discussed.




Longman Atlas


Book Description

"... designed to support Geography and Society and Environment courses in all states"--Cover, Atlas.