MXene-Based Hybrid Nano-Architectures for Environmental Remediation and Sensor Applications


Book Description

Approx.630 pages Covers fundamentals of MXene-based hybrid nanostructures, including synthesis and characterization methods Explores innovative and emerging applications, with a focus on environmental remediation and sensors Addresses challenges, such as environmental impact and lifecycle, as well as future possibilities




Handbook of Functionalized Nanostructured MXenes


Book Description

This book covers the various aspects of MXenes nanomaterials and its composites from the fabrication to the potential applications in energy devices, sensors, and environmental remediation. MXenes are two-dimensional (2D) transition metal carbides and nitrides which contains novel combination of properties including great conductivity and mechanical, thermal features of transition metal carbide and nitrides. In addition, MXenes nanomaterials possess high surface area, novel morphology, and layered structure and the functionalized of its surfaces gives it excellent hydrophilic characteristics and high absorption of electromagnetic radiations making them versatile materials for various applications. The beginning part of the book gives an in-depth literature covering the fundamental principles, fabrication, self-assembling strategies of nano-engineered MXenes, and their composites materials. The later chapters describe the chemical functionalization of MXenes nanomaterials for diversified applications such as electromagnetic shielding, energy storage devices (super capacitors, lithium ion batteries, CO2 capture, optical switching, transistors), photo catalysis, drug delivery, implants, tissue engineering, water purification, and sensing applications. It demonstrates that MXene-based advanced architectures promote continuous innovations and provide driving force in different fields particularly in environmental remediation and energy storage devices. This book is essential reading for all chemists, biologists, physicists, and environmental scientists working in the field of nanotechnology, energy, and environmental chemistry. It helps academics and professionals to polish their knowledge with the latest described data. It also helps professionals in developing innovative technologies by keeping in mind the applications of functionalized nanostructured MXenes.




MXenes as Emerging Modalities for Environmental and Sensing Applications


Book Description

MXenes as Emerging Modalities for Environmental and Sensing Applications: Theories, Design and Approach explores how MXene-based hybrid nanostructures are used to remedy environmental pollutants. The book also explains how they assist in sensing and degradation/removal applications to protect the ecological system, both environmental and aquatic life, from various types of toxic pollutants released from industrial sectors. This book focuses on the design, fabrication, and application of MXene-based nanostructures and their integration with the biotechnological processes for monitoring and treatment of pollutants in environmental matrices and sensing applications. It aims to increase scientific and technological awareness of the urgency required to tackle life-threatening pollutants arising from various industrial and biotechnological sectors of the modern world. Provides advanced materials for mitigating environmental pollutants that collectively describe the entire aspects of environmental and material chemistry Explains the use of MXenes and MXenes-based hybrid materials as advanced environmental remediation tools Focuses on the most advanced industrial-scale materials for industry, including current challenges during manufacturing and applications Offers up-to-date reference materials, including websites of interest and information about the latest research







Functional Hybrid Nanomaterials for Environmental Remediation


Book Description

Functional and structural nanomaterials are emerging materials that display interesting physical and chemical properties because of their size and surface area to volume ratio. Applications for these materials include uses in removing pollutants from the environment. Looking at the current state-of-the-art as well as future trends in the use of nanomaterials for tackling environmental issues this book covers everything from the synthesis and characterisation of these materials to their use in the removal of specific contaminants. Functional Hybrid Nanomaterials for Environmental Remediation is a useful resource both for nanomaterial scientists interested in the real world application of hybrid nanomaterials and for environmental chemists and environmental engineers interested in novel materials for environmental remediation.




Nanomaterials for Sustainable Energy and Environmental Remediation


Book Description

Nanostructured materials, especially, 1D, 2D and 3D nanostructures, and their engineered architectures are being increasingly used due to their potential to achieve sustainable development in energy and environmental sectors, providing a solution to a range of global challenges. A huge amount of research has been devoted in the recent past on the fine-tuning of nano-architecutres to accomplish innovations in energy storage and conversions, i.e., batteries, supercapacitors, fuel cells, solar cells, and electrochromic devices, bifunctional catalysts for ORR and OER, gas to fuels, liquid to fuels, and photocatalysts, corrosion, electrochemical sensors, and pollution and contaminants removal. Nanomaterials for Sustainable Energy and Environmental Remediation describes the fundamental aspects of a diverse range of nanomaterials for the sustainable development in energy and environmental remediation in a comprehensive manner. Experimental studies of varies nanomaterials will be discussed along with their design and applications, with specific attention to various chemical reactions involving and their challenges for catalysis, energy storage and conversion systems, and removal of pollutants are addressed. This book will also emphasise the challenges with past developments and direction for further research, details pertaining to the current ground - breaking technology and future perspective with multidisciplinary approach on energy, nanobiotechnology and environmental science Summarizes the latest advances in how nanotechnology is being used in energy and environmental science Outlines the major challenges to using nanomaterials for creating new products and devices in the sustainable energy and environmental sectors Helps materials scientists and engineers make selection and design decisions regarding which nanomaterial to use when creating new produts and evices for energy and environmental applications




Sustainable Nanotechnology for Environmental Remediation


Book Description

Sustainable Nanotechnology for Environmental Remediation provides a single-source solution to researchers working in environmental, wastewater management, biological and composite nanomaterials applications. It addresses the potential environmental risks and uncertainties surrounding the use of nanomaterials for environmental remediation, giving an understanding of their impact on ecological receptors in addition to their potential benefits. Users will find comprehensive information on the application of state-of-the-art processes currently available to synthesize advanced green nanocomposite materials and biogenic nanomaterials. Other sections explore a wide range of promising approaches for green nanotechnologies and nanocomposites preparations. Case study chapters connect materials engineering and technology to the social context for a sustainable environment. Applications and different case studies provide solutions to the challenges faced by industry, thus minimizing negative social impacts. Provides information on the use of biologically mediated synthetic protocols to generate nanomaterials Discusses a wide range of promising?approaches?for?green nanotechnologies and nanocomposites preparations Presents novel fabrication techniques for bionanocomposites, paving the way for the development of a new generation of advanced materials that can cope with spatiotemporal multi-variant environments




Hybrid Nanomaterials for Sustainable Applications


Book Description

Hybrid Nanomaterials for Sustainable Applications: Case Studies and Applications brings together the latest advances in hybrid nanocomposites and their diverse applications for improved sustainability. The book begins by introducing hybrid nanomaterials, synthesis strategies, and approaches to production for engineering applications. Subsequent sections provide chapters on key application areas, including water purification, nanobiotechnologies, energy storage, and biomedicine, presenting approaches for sustainable application for each usage. Throughout the book, key challenges are addressed, with case studies used to support implementation and improve end applications. This is a valuable resource for researchers and advanced students in nanotechnology, polymer science, sustainable materials, chemistry, chemical engineering, environmental science, and materials engineering, as well as industrial scientists, engineers, and R&D professionals with an interest in hybrid nanomaterials for a range of applications. Offers the latest techniques in the synthesis and preparation of hybrid nanomaterials Addresses challenges and uses case studies to support further development and implementation Opens the door to key sustainable applications across water purification, nanobiotechnologies, energy storage and biomedicine




Environmental Applications Of Nanomaterials: Synthesis, Sorbents And Sensors (2nd Edition)


Book Description

This book is concerned with functional nanomaterials, materials containing specific, predictable nanostructures whose chemical composition, or interfacial structure enables them to perform a specific job: to destroy, sequester, or detect some material that constitutes an environmental threat. Nanomaterials have a number of features that make them ideally suited for this job: they have a high surface area, high reactivity, easy dispersability, and rapid diffusion, to name a few. The purpose of this book is to showcase how these features can be tailored to address some of the environmental remediation and sensing/detection problems faced by mankind today. A number of leading researchers have contributed to this volume, painting a picture of diverse synthetic strategies, structures, materials, and methods. The intent of this book is to showcase the current state of environmental nanomaterials in such a way as to be useful both as a research resource and as a graduate level textbook. We have organized this book into sections on nanoparticle-based remediation strategies, nanostructured inorganic materials (e.g. layered materials like the apatites), nanostructured organic/inorganic hybrid materials, and the use of nanomaterials to enhance the performance of sensors.




MXene Nanocomposites


Book Description

MXenes offer single step processing, excellent electrical conductivity, easy heat dissipation behavior, and capacitor-like properties and are used in photodetectors, lithium-ion batteries, solar cells, photocatalysis, electrochemiluminescence sensors, and supercapacitors. Because of their superior electrical and thermal conductivities, these composites are an ideal choice in electromagnetic interference (EMI) shielding. MXene Nanocomposites: Design, Fabrication, and Shielding Applications presents a comprehensive overview of these emerging materials, including their underlying chemistry, fabrication strategies, and cutting-edge applications in EMI shielding. Covers modern fabrication technologies, processing, properties, nanostructure formation, and mechanisms of reinforcement Discuss biocompatibility, suitability, and toxic effects Details innovations, applications, opportunities, and future directions in EMI shielding applications This book is aimed at researchers and advanced students in materials science and engineering and is unique in its detailed coverage of MXene-based polymer composites for EMI shielding.