MXene-Filled Polymer Nanocomposites


Book Description

MXenes are a new family of two-dimensional (2D) metal carbides, having properties such as metallic conductivity and hydrophilicity. Adding polymer binders/spacers between atomically thin MXene layers or reinforcing polymers with MXenes results in composite films that have excellent flexibility, good tensile and compressive strengths, and electrical conductivity. This book covers all advances in the field of MXene-filled polymer nanocomposites to date, illustrating fabrication and characterization, and specific properties like anti-healing, anti-friction, and microwave absorption. It further covers potential applications like energy conversion, storage systems, antibacterial, and drug delivery. The book features: exclusive material on MXene-based polymer nanocomposites properties and potential applications of polymers upon addition of MXenes the effect of MXenes on various thermoplastic and elastomer polymers a focus on the properties, fabrications methods, and applications of relevant polymer matrices; and extensive coverage of the role of MXenes in polymers This book is aimed at researchers, professionals, and graduate students in material science, polymer engineering, electronic materials, composites, chemical processing, chemical sciences, fire engineering, and biomedicine.




MXenes and their Composites


Book Description

MXenes and their Composites: Synthesis, Properties and Potential Applications presents a state of the art overview of the recent developments on the synthesis, functionalization, properties and emerging applications of two-dimensional (2D) MXenes and their composites.The book systematically describes the state-of-the-art knowledge and fundamentals of MXene synthesis, structure, surface chemistry and functionalization. The book also discusses the unique electronic, optical, mechanical and topological properties of MXenes. Besides, this book covers the various emerging applications of MXenes and their composites across different fields such as energy storage and conversion, gas sensing and biosensing, rechargeable lithium and sodium-ion batteries, lithium-sulphur and multivalent batteries, electromagnetic interference shielding, hybrid capacitors and supercapacitors, hydrogen storage, catalysis and photoelectrocatalysis, gas separation and water desalination, environmental remediation and medical and biomedical applications. All these applications have been efficiently discussed in the specific chapters and in each case, the processing of MXene composites has also been discussed.This book will be an excellent reference for scientists and engineers across various disciplines and industries working in the field of highly promising 2D MXenes and their composites. The book will also act as a guide for academic researchers, material scientists, and advanced students in investigating the new applications of 2D MXenes based materials. - Covers fundamentals of technologically important MAX phases, MXene derivatives, MXene synthesis methods, intercalation and delamination strategies, surface functionalization, fundamental characteristics and properties - Demonstrates major application areas of MXenes, including catalytic, energy storage and energy generation, flexible electronics, EMI shielding, sensors and biosensors, medical and biomedical, gas separation and water desalination - Presents a detailed discussion on the processing and performance of various MXenes towards different applications




Polymer Nanocomposite Materials


Book Description

Polymer Nanocomposite Materials Discover an authoritative overview of zero-, one-, and two-dimensional polymer nanomaterials Polymer Nanocomposite Materials: Applications in Integrated Electronic Devices delivers an original and insightful treatment of polymer nanocomposite applications in energy, information, and biotechnology. The book systematically reviews the preparation and characterization of polymer nanocomposites from zero-, one-, and two-dimensional nanomaterials. The two distinguished editors have selected resources that thoroughly explore the applications of polymer nanocomposites in energy, information, and biotechnology devices like sensors, solar cells, data storage devices, and artificial synapses. Academic researchers and professional developers alike will enjoy one of the first books on the subject of this environmentally friendly and versatile new technology. Polymer Nanocomposite Materials discusses challenges associated with the devices and materials, possible strategies for future directions of the technology, and the possible commercial applications of electronic devices built on these materials. Readers will also benefit from the inclusion of: A thorough introduction to the fabrication of conductive polymer composites and their applications in sensors An exploration of biodegradable polymer nanocomposites for electronics and polymer nanocomposites for photodetectors Practical discussions of polymer nanocomposites for pressure sensors and the application of polymer nanocomposites in energy storage devices An examination of functional polymer nanocomposites for triboelectric nanogenerators and resistive switching memory Perfect for materials scientists and polymer chemists, Polymer Nanocomposite Materials: Applications in Integrated Electronic Devices will also earn a place in the libraries of sensor developers, electrical engineers, and other professionals working in the sensor industry seeking an authoritative one-stop reference for nanocomposite applications.




Nanoparticle-Based Polymer Composites


Book Description

Nanoparticle-Based Polymer Composites discusses recent advancements on the synthesis, processing, characterization and applications of this new class of hybrid materials. Chapters cover recycling and lifecycle assessment, with contributions from leading researchers in industry, academics, the government and private research institutes from across the globe. As nanoparticle-based polymer composites are now replacing traditional polymer composites in a broad range of applications such as fuel cells, electronic and biomedical devices, this book presents the latest advancements in the field.Studies have shown that incorporating metal nanoparticles in polymer matrices can improve their mechanical, thermal, electrical and barrier properties. The unique combination of these properties makes this new class of materials suitable for a broad range of different and advanced applications. - Features recent advancements on the synthesis, processing and characterization of nanoparticle-based polymer composites - Discusses recycling and lifecycle assessment - Highly application-orientated, with contributions from leading international researchers in industry, academia, the government and private research institutes




MXene Nanocomposites


Book Description

MXenes offer single step processing, excellent electrical conductivity, easy heat dissipation behavior, and capacitor-like properties and are used in photodetectors, lithium-ion batteries, solar cells, photocatalysis, electrochemiluminescence sensors, and supercapacitors. Because of their superior electrical and thermal conductivities, these composites are an ideal choice in electromagnetic interference (EMI) shielding. MXene Nanocomposites: Design, Fabrication, and Shielding Applications presents a comprehensive overview of these emerging materials, including their underlying chemistry, fabrication strategies, and cutting-edge applications in EMI shielding. • Covers modern fabrication technologies, processing, properties, nanostructure formation, and mechanisms of reinforcement. • Discuss biocompatibility, suitability, and toxic effects. • Details innovations, applications, opportunities, and future directions in EMI shielding applications. This book is aimed at researchers and advanced students in materials science and engineering and is unique in its detailed coverage of MXene-based polymer composites for EMI shielding.







Advances in Functionalized Polymer Nanocomposites


Book Description

Advances in Functionalized Polymer Nanocomposites: From Synthesis to Applications presents a detailed review on the synthesis, fundamental chemistry, properties, and applications of these high-performance materials. The introductory chapter provides a brief overview of the various types of organic and inorganic nanofillers used for the synthesis of polymer nanocomposites. Emphasis is placed on their fundamental chemistry, processing methods, functionalization and/or surface modification strategies. The dispersion state and their specific interaction with polymer matrices is also discussed in detail, as well as characterization techniques for functionalized nanofillers and functionalized polymer nanocomposites, and their properties, and applications. The book will be a valuable reference source for scientists, engineers, and postgraduate students, working in the field of polymer science and technology, materials science and engineering, composites, and nanocomposites. - Covers fabrication, processing, characterization, and properties of various functionalized polymer nanocomposites - Explores usage in energy storage systems, biomedical fields, environmental remediation, catalysis, gas sensing, biosensing, and electromagnetic interference (EMI) shielding - Provides information on lifecycle assessment and environmental and health impacts of these materials




Two-Dimensional Nanomaterials Based Polymer Nanocomposites


Book Description

Two-Dimensional Nanomaterials-Based Polymer Nanocomposites This book presents an extensive discussion on fundamental chemistry, classifications, structure, unique properties, and applications of various 2D nanomaterials. The advent of graphene in 2004 has brought tremendous attention to two-dimensional (2D) nanomaterials. Lately, this has prompted researchers to explore new 2D nanomaterials for cutting-edge research in diverse fields. Polymer nanocomposites (PNCs) represent a fascinating group of novel materials that exhibit intriguing properties. The unique combination of polymer and nanomaterial not only overcomes the limitations of polymer matrices, but also changes their structural, morphological, and physicochemical properties thereby broadening their application potential. The book, comprising 22 chapters, provides a unique and detailed study of the process involved in the synthesis of 2D nanomaterials, modification strategies of 2D nanomaterials, and numerous applications of 2D nanomaterials-based polymer nanocomposites. The book also emphasizes the existing challenges in the functionalization and exfoliation of 2D nanomaterials as well as the chemical, structural, electrical, thermal, mechanical, and biological properties of 2D nanomaterials-based polymer nanocomposites. The key features of this book are: Provides fundamental information and a clear understanding of synthesis, processing methods, structure and physicochemical properties of 2D materials-based polymer nanocomposites; Presents a comprehensive review of several recent accomplishments and key scientific and technological challenges in developing 2D materials-based polymer nanocomposites; Explores various processing and fabrication methods and emerging applications of 2D materials-based polymer nanocomposites. Audience Engineers and polymer scientists in the electrical, coatings, and biomedical industries will find this book very useful. Advanced students in materials science and polymer science will find it a fount of information.




Broadband Dielectric Spectroscopy


Book Description

Both an introductory course to broadband dielectric spectroscopy and a monograph describing recent dielectric contributions to current topics, this book is the first to cover the topic and has been hotly awaited by the scientific community.




MXene Reinforced Polymer Composites


Book Description

MXene Reinforced Polymer Composites This volume is the first book to comprehensively explore the various fabrication and processing strategies for MXene-reinforced polymer composites including detailed characterizations and their numerous applications. The book systematically provides a critical discussion on the synthesis and processing methods, structure, properties, characterizations, surface chemistry, and functionalization strategies of MXenes and their utilization as efficient nanofiller into various polymer matrices to form high-performance polymer composites. The book provides a deep insight into the recent state-of-the-art progress in MXene-reinforced polymer composites, discussing several critical issues and providing suggestions for future work. The key features of this book are: Providing fundamental information and a clear understanding of the synthesis, processing, compositions, structure, and physicochemical properties of MXenes; Presenting a comprehensive review of several recent accomplishments and key scientific and technological challenges in developing MXene-reinforced polymer composites; Exploring various processing and fabrication methods of MXene-reinforced polymer composites; Providing deep insight into fundamental properties and various emerging applications of MXene-reinforced polymer/composites. Audience Researchers, postgraduates, and industry engineers working in materials science, polymer science, materials engineering, and nanotechnology, as well as technologists in electronic, electrical, and biomedical industries.