Mycorrhizal Symbiosis


Book Description

The roots of most plants are colonized by symbiotic fungi to form mycorrhiza, which play a critical role in the capture of nutrients from the soil and therefore in plant nutrition. Mycorrhizal Symbiosis is recognized as the definitive work in this area. Since the last edition was published there have been major advances in the field, particularly in the area of molecular biology, and the new edition has been fully revised and updated to incorporate these exciting new developments. - Over 50% new material - Includes expanded color plate section - Covers all aspects of mycorrhiza - Presents new taxonomy - Discusses the impact of proteomics and genomics on research in this area




Molecular Mycorrhizal Symbiosis


Book Description

Recent years have seen extensive research in the molecular underpinnings of symbiotic plant-fungal interactions. Molecular Mycorrhizal Symbiosis is a timely collection of work that will bridge the gap between molecular biology, fungal genomics, and ecology. A more profound understanding of mycorrhizal symbiosis will have broad-ranging impacts on the fields of plant biology, mycology, crop science, and ecology. Molecular Mycorrhizal Symbiosis will open with introductory chapters on the biology, structure and phylogeny of the major types of mycorrhizal symbioses. Chapters then review different molecular mechanisms driving the development and functioning of mycorrhizal systems and molecular analysis of mycorrhizal populations and communities. The book closes with chapters that provide an overall synthesis of field and provide perspectives for future research. Authoritative and timely, Molecular Mycorrhizal Symbiosis, will be an essential reference from those working in plant and fungal biology.




Biogeography of Mycorrhizal Symbiosis


Book Description

This book offers a timely overview and synthesis of biogeographic patterns of plants and fungi and their mycorrhizal associations across geographic scales. Written by leading experts in the field, it provides an updated definition of mycorrhizal types and establishes the best practices of modern biogeographic analyses. Individual chapters address the basic processes and mechanisms driving community ecology, population biology and dispersal in mycorrhizal fungi, which differ greatly from these of prokaryotes, plants and animals. Other chapters review the state-of-the-art knowledge about the distribution, ecology and biogeography of all mycorrhizal types and the most important fungal groups involved in mycorrhizal symbiosis. The book argues that molecular methods have revolutionized our understanding of the ecology and biogeography of mycorrhizal symbiosis and that rapidly evolving high-throughput identification and genomics tools will provide unprecedented information about the structure and functioning of mycorrhizal symbiosis on a global scale. This volume appeals to scientists in the fields of plant and fungal ecology and biogeography.




Mycorrhizal Planet


Book Description

In Mycorrhizal Planet, Michael Phillips offers new insights into the invisible world beneath our feet, explaining the crucial, symbiotic role that fungi play in everything from healthy plants to healthy soils to a healthy planet.--COVER.




Mycorrhizal Symbiosis


Book Description

In nature, the roots of most plants are colonized by symbiotic fungi to form mycorrhiza, which play a critical role in the capture of nutrients from the soil, and therefore in plant nutrition. Thirteen years have passed since the publication of the First Edition of Mycorrhizal Symbiosis, the book that has been generally acclaimed as the most definitive work on this fascinating topic. The Second Edition co-authored by Professor Sally Smith and Professor David Read has been completely rewritten to cover the significant advances in our understanding of this field.Key Features* Separate accounts of major mycorrhizal types, highlighting structure, development, physiology and ecology* Integrative treatment, covering nutrient transport, roles of mycorrhizas in ecology, applications in man-made environments, and interactions with pollutants* In depth treatment of evolutionary and developmental aspects, plus closer examination of external mycelium, and transport processes* Appreciation of diversity of form and function within major mycorrhizal types, and its importance in ecosystems




Mycorrhiza


Book Description

The second edition of Mycorrhiza falls into a time period of excep tionally rapid growth in mycorrhizal research. Therefore the edi tors have been most pleased with the decision of the Springer Verlag to revise the first edition and to incorporate the remarkable advances experienced in the mycorrhizal field. The pace of discovery has been particularly fast at the two poles of biological complexity, the molecular events leading to changes in growth and differentiation, as well as the factors regulating the structure and diversity of natural populations and communities. Therefore the most significant changes introduced in the new edition of this book are found within these topics. Not only were many chapters up dated, but also new chapters have replaced existing ones. The individual decisions have not been easy, since valuable contribu tions had to be sacrificed in favour of new aspects; but the authors hope that a highly topical new edition will be of greatest benefit for a rapidly expanding field of research. We welcome comments and critics from readers. Since it was possible again to find leading scientists as contribu tors, we are confident that this revised second edition will stimulate further progress and contribute to a deeper understanding of advances in the mycorrhizal field. We are grateful to the Springer Verlag, especially Dr. Dieter Czeschlik, for his continued interest and active help. Dr. Maja Hilber-Bodmer and Dr.




Arbuscular Mycorrhizas: Physiology and Function


Book Description

In the years since the first edition of “Arbuscular Mycorrhizas: Physiology and Function” was published, an exceptional proliferation of interest in mycorrhizal biology has developed. This has been associated with advances in different research disciplines such as genetics, genomics, proteomics, metabolomics and physiology, advances which have generated better insight into topics of mycorrhizal biology, including the mechanisms of host-mycorrhiza interactions pre- and post-penetration, the influence of the symbiosis on the host and its surroundings, and the evolution and diversity of mycorrhization. It therefore became necessary to both update and expand the book's coverage in this, its second edition.




Plant Microbe Symbiosis


Book Description

This book provides an overview of the latest advances concerning symbiotic relationships between plants and microbes, and their applications in plant productivity and agricultural sustainability. Symbiosis is a living phenomenon including dynamic variations in the genome, metabolism and signaling network, and adopting a multidirectional perspective on their interactions is required when studying symbiotic organisms. Although various plant-microbe symbiotic systems are covered in this book, it especially focuses on arbuscular mycorrhiza (AM) symbiosis and root nodule symbiosis, the two most prevalent systems. AM symbiosis involves the most extensive interaction between plants and microbes, in the context of phylogeny and ecology. As more than 90% of all known species of plants have the potential to form mycorrhizal associations, the productivity and species composition, as well as the diversity of natural ecosystems, are frequently dependent upon the presence and activity of mycorrhizas. In turn, root nodule symbiosis includes morphogenesis and is formed by communication between plants and nitrogen-fixing bacteria. The biotechnological application of plant–microbe symbiosis is expected to foster the production of agricultural and horticultural products while maintaining ecologically and economically sustainable production systems. Designed as a hands-on guide, this book offers an essential resource for researchers and students in the areas of agri-biotechnology, soil biology and fungal biology.




Mycorrhizal Biology


Book Description

`The fundamental problem the world faces today, is the rapidly increasing pressure of population on the limited resources of the land. To meet the ever increasing demands of expanding populations, agricultural production has been raised through the abundant use of inorganic fertilizers, the adoption of multicropping systems and liberal application of chemical pesticides (fungicides, bactericides, etc. ). Though the use of chemicals has increased the yield dramatically, it has also resulted in the rapid deterioration of land and water resources apart from wastage of scarce resources. This has adversely affected the biological balance and lead to the presence of toxic residues in food, soil and water in addition to imposing economic constraints on developing countries.' (From the Preface) Mycorrhizal Biology addresses the global problem of land degradation and the associated loss of soil productivity and decline in soil quality caused by exploitative farming practices and poor management in developing countries, and the far reaching socio-economic and ecological consequences of its impact on agricultural productivity and the environment. In the light of a need for sustainable development, a new system of productive agriculture, to ensure the efficient management of agricultural inputs for long term high crop productivity with minimum damage to the ecological and socio-economic environment is essential. The management of mycorrhizal fungi will form a significant part of such a system and this work investigates the key association of plant roots with mycorrhizal fungi, known to benefit plants under conditions of nutritional and water stress and pathogen challenge and analyses the developments in our understanding of the genetic loci that govern mycorrhiza formation.




Mycorrhizal Fungi in South America


Book Description

In order to feed the world, global agriculture will have to double food production by 2050. As a result, the use of soils with fertilizers and pesticides in agronomic ecosystems will increase, taking into account the sustainability of these systems and also the provision of food security. Thus, soil ecosystems, their health, and their quality are directly involved in sustainable agronomical practices, and it is important to recognize the important role of soil microbial communities such as mycorrhizal fungi, their biodiversity, interactions, and functioning. Soil ecosystems are under the threat of biodiversity loss due to an increase of cultivated areas and agronomic exploitation intensity. Also, changes in land use alter the structure and function of ecosystems where biodiversity is vital in the ecosystem. Soils are a major aid in food production in all terrestrial ecosystems; however, this means they are also involved in gas emission and global warming. Thus, in agronomic ecosystems, several mitigation practices have been proposed to promote the increase of carbon soil stock, and the reduction of warming gas emission from soils. In South America, most of the rural population depends economically on agriculture and usually works in family units. New, organic, safe, and sustainable agro-forestry practices must be applied to support local communities and countries to achieve hunger eradication, rural poverty reduction, and sustainable development. This book compiles new information for mycorrhizal occurrence in natural and anthropic environments in South America. It includes new reports of mycorrhizal fungi diversity along different mycorrhizal types and their effect on plant communities, plant invasions, the use of mycorrhizal fungi for ecological and sustainable studies, management programs of natural and agroecosystems, and forestry and food-secure production. This book fills the gaps in biodiversity knowledge, management and safe food production of mycorrhizas. It should be a valuable help to researchers, professors and students, to aid in use of mycorrhizal fungi while also focusing on their biodiversity, sustainable safe food production, and conservation perspectives.