Nano-Biofortification for Human and Environmental Health


Book Description

Nanotechnology has shown great potential to alleviate increasing pressure to meet food needs for our increasing human population, Novel agricultural innovations are required to enhance the health of edible crops and per unit area yield without impacting the associated environment in a negative way. Recent advancements in nanotechnology-based agricultural solutions have proven to help overcome the problems in agriculture that are associated with run-off of essential fertilizers from agricultural soils, low nutrient accumulation by crops, as well as to control insects, pests, and seasonal biotic factors, treatment of wastewater used for irrigation, plant uptake of xenobiotics (heavy metals, pesticides, industrial chemicals, drugs, and so on) that may be present in contaminated soils. Additionally, the consumption of such food crops may result in malnourishment and plant-mediated transfer of toxic substances among humans especially in underprivileged and rural populations. Agents to stimulate plant growth include various types of nanomaterials such as carbon nanotubes, metal, and metal-oxide nanoparticles. Applications of particular nutrients or elements in crop plants can be shown to aid human nourishment (either by directly inducing its uptake or indirectly through enhancing the intracellular levels of other associated elements that ultimately boost the synthesis of the desired nutrient in plants). It is also important to consider the competence and fate of nanomaterials in soil ecosystems. The entry route of nanomaterials into the environment includes both natural and anthropogenic sources. In order to achieve sustainable and safe use of nanotechnological products in agriculture, similar environmental conditions must be simulated on lab scale with the careful selection of organisms related to agriculture. Thus, emphasis should be placed on the judicial use of nano-enabled products without compromising the sustainability of the environment and human health. This comprehensive book highlights recent field research as well as contributions from academicians in the lab. This book addresses the major aspects related to nanotechnology, biofortification of crops, and human and environmental health.




Selenium and Nano-Selenium in Environmental Stress Management and Crop Quality Improvement


Book Description

Crop plants growing under field conditions are constantly exposed to various abiotic and biotic stress factors leading to decreased yield and quality of produce. In order to achieve sustainable development in agriculture and to increase agricultural production for feeding an increasing global population, it is necessary to use ecologically compatible and environmentally friendly strategies to decrease the adverse effects of stresses on the plant. Selenium is one of the critical elements from the biological contexts because it is essential for human health; however, it becomes toxic at high concentrations. It has been widely reported that selenium can promote plant growth and alleviate various stresses as well as increase the quantity and quality of the yield of many plant species. Nonetheless, at high concentrations, selenium causes phytotoxicity. In the last decade, nanotechnology has emerged as a prominent tool for enhancing agricultural productivity. The production and applications of nanoparticles (NPs) have greatly increased in many industries, such as energy production, healthcare, agriculture, and environmental protection. The application of NPs has attracted interest for their potential to alleviate abiotic and biotic stresses in a more rapid, cost-effective, and more sustainable way than conventional treatment technologies. Recently, research related to selenium-NPs-mediated abiotic stresses and nutritional improvements in plants has received considerable interest by the scientific community. While significant progress was made in selenium biochemistry in relation to stress tolerance, an in-depth understanding of the molecular mechanisms associated with the selenium- and nano-selenium-mediated stress tolerance and bio-fortification in plants is still lacking. Gaining a better knowledge of the regulatory and molecular mechanisms that control selenium uptake, assimilation, and tolerance in plants is therefore vital and necessary to develop modern crop varieties that are more resilient to environmental stress. This book provides a comprehensive overview of the latest understanding of the physiological, biochemical, and molecular basis of selenium- and nano-selenium-mediated environmental stress tolerance and crop quality improvements in plants. It helps researchers to develop strategies to enhance crop productivity under stressful conditions and to better utilize natural resources to ensure future food security and to reduce environmental contamination. Finally, this book is a valuable resource for promoting future research into plant stress tolerance, and a reference book for researchers working on developing plants tolerant to abiotic and biotic stressors as well as bio-fortification and phytoremediation.




Nanotechnology and Plant Disease Management


Book Description

Nanotechnology and Plant Disease Management explores the intersection of nanotechnology and agriculture. This book serves as a comprehensive exploration of the current state and future potential of nanoparticles in revolutionizing plant disease management within the realm of agriculture. This book elucidates the synthesis, characterization and judicious application of nanoparticles, providing a clear and accessible explanation of what nanomaterials are, how they are characterized, and their pivotal role in reshaping the plant disease management systems. It scrutinizes innovative strategies that influence the unique properties of nanoparticles to identify and monitor the presence of pathogens at early stages. The book also examines the limitations inherent in the use of nanomaterials for disease management in plants by critically evaluating both sides of the spectrum. This aims to provide a candid overview of the hurdles that must be overcome to unlock the full benefits of nanotechnology in this field. By pinpointing and understanding these obstacles, the current work aims to pave the way for effective strategies and solutions, ensuring the responsible and optimized application of nanomaterials for enhanced plant disease management. This in-depth examination serves as a cornerstone, providing readers with a profound understanding of the intricate processes involved in synthesis, characterization and utilizing nanomaterials for disease control. Nanotechnology and Plant Disease Management is a testament to the transformative potential of nanotechnology in agriculture. The authors invite readers to embark on this enlightening journey, exploring the intricate world of nanomaterials and their application in safeguarding the health and vitality of plants.







Selenium in the Environment and Human Health


Book Description

Selenium is arguably the naturally occurring trace element of greatest concern worldwide. In excessive amounts it can lead to toxicosis and teratogenesis in animals, while the impact of selenium deficiency can be even more significant. Contributors from 22 countries explored the connections and inter-relationships between selenium in the environment, agriculture, human and animal health, and molecular and biochemistry processes to complete this book containing 90 peer-reviewed extended abstracts. The text represents glimpses of the presentations that were delivered at the 3rd International Conference on Selenium in the Environment and Human Health in 2013 in Hefei, China. We are indebted to the international authors representing a multitude of disciplines from academic, industry, and governments for sharing their extraordinary new knowledge on selenium research.




Toxicity of Nanoparticles in Plants


Book Description

Toxicity of Nanoparticles in Plants: An Evaluation of Cyto/Morpho-physiological, Biochemical and Molecular Responses, Volume Five in the Nanomaterial-Plant Interactions series, reviews the latest research on toxicological effects of using nanotechnology in plants. Key themes include analyzing plant exposure to nanomaterials, mechanisms of toxicity of nanoparticles to plants, and effects, uptake and translocation of various different nanoparticles. This will be an essential read for any scientist or researcher looking to assess and understand the potential toxicological risks associated with plant nanotechnology. To date, nanotechnology is considered one of the most promising areas of research due to the widespread applications of nanomaterials in plant science and agriculture. However, extensive use of nano-based products raises concerns regarding their toxicity in crop plants, their environmental impact and potential consequences to humans via the food chain. - Discusses environmental concerns raised by the extensive use of nanotechnology - Highlights the impact of plants treated with nanoparticles on nutritional status - Reviews major challenges for assessing the toxicity of nanomaterials in plants




Nanofertilizer Delivery, Effects and Application Methods


Book Description

Nanofertilizer Delivery, Effects and Application Methods explores the science of nutrient nanoformulation, a potential tool toward sustainable and climate-sensitive crops.Wide-spread use of chemical fertilizers has been shown to causes significant damage to soil structure, mineral cycles, soil microbial flora, plants, and creating human health risk both immediately and for future generations. Through methods that include targeted distribution, and gradual or controlled release, nanostructured fertilizers can improve nutrient usage efficiency. According to recent studies, through environmental cues and biological demands, nano-fertilizers can respond to specifical challenges, and boost agricultural yield by increasing the rate of seed germination, seedling growth, photosynthetic activity, nitrogen metabolism, and carbohydrate and protein synthesis. Nanofertilizer Delivery, Effects and Application Methods discusses the potential agricultural benefits of nanofertilizers from coverage of their formulation and delivery, to application, plant uptake, translocation, and destiny, and their overall effect on plant physiology and metabolism. This book is ideal for researchers in industry and academia. - Highlights types, uses, and advantages of a wide range and variety of nanofertilizers on agri-food sectors - Looks at current practices, their challenges, and future development opportunities - Includes methods and applications for real-world insights




Mineral Biofortification in Crop Plants for Ensuring Food Security


Book Description

This book provides a comprehensive summary of the recent advances in the biofortification of plants under climate change and how it affects food security globally. The need for mineral biofortification to eradicate or alleviate malnutrition through sustainable agriculture is also discussed. Biofortification of edible plants is considered the most appropriate approach to alleviate nutritional problems and nutrient deficiencies. In contrast, biofortification focuses on improving the nutritional content of the region's current agricultural biodiversity while preserving its habits and customs. Emphasis is also placed on recent advances and developments in omics, particularly metabolomics and related techniques, to unravel the potential alterations in plants caused by biofortification. The book brings together eminent scientists to present the latest developments in the field. This timely publication addresses practical scenarios of bio-fortified food production and climate change. The book focuses on the methods, techniques, and environmental changes used to enhance and improve agricultural products. This book is one of the first to provide information on the use of modern biotechnologies to modify crops for health benefits. It also examines the mechanisms of the plant responses to genetically induced biofortification, the production and responses of fortified plants under climate change, and their effects on food security. The book will be useful for students and researchers, especially crop scientists, environmental scientists, biotechnologists, botanists, and agronomists, to understand the techniques and mechanisms of biofortification, and responses of biofortified plants under climate change.




Nanofertilizers for Sustainable Agroecosystems


Book Description

Large-scale chemical fertilizer application causes irreparable damage to soil structure, mineral cycles, soil microbial flora, plants, and other food chains across ecosystems, culminating in heritable mutations in future generations of consumers. A better way forward is the use of nanofertilizers to focus on macro elements (N, P, K), as switching to nanofertilizers may result in large environmental benefits by replacing the majority of these nutrients. Furthermore, the biosynthesis of nanomaterials using bacteria, algae, yeast, fungus, actinomycetes, and plants has opened up a new avenue of research in the production of inorganic nanoparticles as ecologically friendly fertilizers. Nanofertilizers should also attain increased efficiency because of a several-fold increase in the surface-to-volume ratio of nano-forms of nutrients and their suitability for foliar application, where environmental losses are further reduced. Nanostructured fertilizers can also improve nutrient use efficiency through strategies such as targeted distribution and progressive or controlled-release as they can precisely release their active molecules in response to environmental cues and biological demands. Recent research shows nanofertilizers can increase agricultural productivity by speeding up seed germination, seedling growth, photosynthetic activity, nitrogen metabolism, and carbohydrate and protein synthesis. The potential agricultural benefits of nanofertilizers, their modes of action, and the fate of nanomaterials in soil are all discussed in this book. It also covers nanofertilizer formulation and delivery, applications, uptake, translocation, and their fate in plants, as well as their impact on plant physiology and metabolism. Nutrient nanoformulation is a valuable method that has the potential to alter the agricultural sector and provide solutions to current and future concerns for sustainable and climate-sensitive crops




Phytoremediation and Biofortification


Book Description

For sustainable environmental management as a whole, the roles of phytoremediation and biofortification as two sides of the same coin must be highlighted. Phytoremediation is a process in which biological organisms are used to eliminate or nullify an environmental pollutant by a metabolic course of action. Biofortification, in contrast, is an agrarian process that enhances the micronutrient content of a food crop through plant breeding, genetic modification, use of enriched fertilizers, or management of agricultural practices. These two strategies, although targeting different objectives, both work on the same principle of the bio-extraction process that involves uptake, accretion, removal, and modification of micro- and macro-nutrient elements from the soil. This volume offers a comprehensive overview of phytoremediation and biofortification of Zn, Fe, Cu, and Cd, etc., and illustrates the emerging and innovative combination of these technologies. With chapters written by experts, the book highlights a wide range of topics and discusses the integration of advanced phytoremediation and biofortification approaches for sustainable ecological and health management. Topics include phytoremediation and biofortification strategies that use nanotechnology; algae, fungi, and other plants; CRISPR/Cas9-mediated genome engineering; and more for decontamination of water and soil and for fortifying plants against climate change, toxic chemicals, and other challenges. Key features: reviews and integrates the currently available information on phytoremediation and biofortification from molecular, biochemical, and physiological levels provides a direction towards implementation of programs and practices to enable the sustainable production of crops, resilient to climatic alterations This volume will be valuable for investigators who are working or have an interest in sustainable environmental management as well as for research students, teachers, scientists, and engineers, whether in academia, industry, or government, and those who have an interest in environmental remediation and micronutrient fields.