Nanobiomaterials in Hard Tissue Engineering


Book Description

Nanobiomaterials in Hard Tissue Engineering covers the latest developments in the field of hard tissue engineering at the nanoscale. Leading researchers from around the world discuss the latest research and offer new insights. This book presents data about the fabrication and characterization of nanobiomaterials involved in hard tissue reconstruction, describing recent progress and the advantages of both conventional and computer-aided methods. Recent applications of different classes of nanobiomaterials are discussed, with in vitro and in vivo applications also explained in detail. Special attention is paid to the applications of nanobiomaterials in bone regeneration and in the development of functional coatings for tailored implants to improve osseointegration. Finally, the book considers future challenges and perspectives. This book will be of interest to postdoctoral researchers, professors and students engaged in the fields of materials science, biotechnology and applied chemistry. It will also be highly valuable to those working in industry, including pharmaceutics and biotechnology companies, medical researchers, biomedical engineers and advanced clinicians. - An up-to-date and highly structured guide for researchers, practitioners and students working in biomedical, biotechnological and engineering fields - A detailed and invaluable overview of hard tissue engineering, an increasingly important field - Proposes novel opportunities and ideas for developing or improving technologies in nanomedicine and nanobiology




Nanomaterials in Tissue Engineering


Book Description

Nanomaterial technologies can be used to fabricate high-performance biomaterials with tailored physical, chemical, and biological properties. They are therefore an area of interest for emerging biomedical technologies such as scaffolding, tissue regeneration, and controlled drug delivery. Nanomaterials in tissue engineering explores the fabrication of a variety of nanomaterials and the use of these materials across a range of tissue engineering applications. Part one focuses on the fabrication of nanomaterials for tissue engineering applications and includes chapters on engineering nanoporous biomaterials, layer-by-layer self-assembly techniques for nanostructured devices, and the synthesis of carbon based nanomaterials. Part two goes on to highlight the application of nanomaterials in soft tissue engineering and includes chapters on cardiac, neural, and cartilage tissue engineering. Finally, the use of nanomaterials in hard tissue engineering applications, including bone, dental and craniofacial tissue engineering is discussed in part three. Nanomaterials in tissue engineering is a standard reference for researchers and tissue engineers with an interest in nanomaterials, laboratories investigating biomaterials, and academics interested in materials science, chemical engineering, biomedical engineering and biological sciences.




Nanobiomaterials


Book Description

Nanobiomaterials: Nanostructured materials for biomedical applications covers an extensive range of topics related to the processing, characterization, modeling, and biomedical applications of nanostructured ceramics, polymers, metals, composites, self-assembled materials, and macromolecules. Novel approaches for bottom-up and top-down processing of nanostructured biomaterials are highlighted. In addition, innovative techniques for characterizing the in vitro behavior and in vivo behavior of nanostructured biomaterials are considered. Applications of nanostructured biomaterials in dentistry, drug delivery, medical diagnostics, surgery and tissue engineering are examined. - Provides a concise description of the materials and technologies used in the development of nanostructured biomaterials - Provides industrial researchers with an up-to-date and handy reference on current topics in the field of nanostructured biomaterials - Includes an integrated approach that is used to discuss both the biological and engineering aspects of nanostructured biomaterials




Nanotechnology for the Regeneration of Hard and Soft Tissues


Book Description

Nanotechnology is an emerging and exciting area in the field of implants. Numerous promising developments have been elucidated regarding the use of nanotechnology to regenerate tissues. This important book highlights the potential of nanophase materials to improve hard and soft tissue applications. In all cases, increased tissue regeneration has been observed for bone, cartilage, vascular, bladder, and central/peripheral nervous system tissues.




Functional Nanomaterials for Regenerative Tissue Medicines


Book Description

This book covers nanomaterials in tissue engineering for regenerative therapies of heart, skin, eye, skeletal muscle, and the nervous system. The book emphasizes fundamental design concepts and emerging forms of nanomaterials in soft- and hard-tissue engineering. FEATURES Fills a gap in the literature related to the application of nanomaterials in hard- and soft-tissue regeneration, repair, and restructure Discusses a variety of applications, including cardiac, kidney, liver, bone, wound healing, artificial organs, and dental Presents advantages and limitations of various nanomaterials alongside future challenges Functional Nanomaterials for Regenerative Tissue Medicines is essential for academics and industry professionals working in tissue engineering, biomedicine, biopharmaceuticals, and nanotechnology. It is primarily intended for materials researchers (to develop the platforms related to tissue regeneration) as well as clinicians (to learn and apply nanomaterials in their practice) and industrial scientists (to develop commercial blood substitute products).




Nanobiomaterials in Clinical Dentistry


Book Description

Nanobiomaterials in Clinical Dentistry, Second Edition shows how a variety of nanomaterials are being used to solve problems in clinical dentistry. New nanomaterials are leading to a range of emerging dental treatments that utilize more biomimetic materials that more closely duplicate natural tooth structure (or bone, in the case of implants). The book's chapters discuss the advantages and challenges of using nanomaterials and include case studies to illustrate how a variety of materials are best used in research and practice. - Contains information from an interdisciplinary, international group of scientists and practitioners in the fields of nanomaterials, dental implants, medical devices and clinical practice - Presents a comprehensive reference on the subject that covers material fabrication and the use of materials for all major diagnostic and therapeutic dental applications--repair, restoration, regeneration, implants and prevention - Complements the editors' previous book on nanotechnology applications for dentistry




Functional Bionanomaterials


Book Description

This book focuses on the application of nanotechnology in medicine and drug delivery, including diagnosis and therapy. Nanomedicine can contribute to the development of a personalized medicine both for diagnosis and therapy. By interacting with biological molecules at nanoscale level, nanotechnology opens up an immense field of research and applications. Interactions between artificial molecular assemblies or nanodevices and biomolecules can be understood both in the extracellular medium and inside human cells. Operating at nanoscale allows exploitation of physical properties different from those observed at microscale, such as the volume to surface area ratio. A number of clinical applications of nanobiotechnology, such as disease diagnosis, target-specific drug delivery, and molecular imaging are being investigated. Some promising new products are also undergoing clinical trials. Such advanced applications of this approach to biological systems will undoubtedly transform the foundations of diagnosis, treatment, and prevention of disease in the future. Nanomedicine sales reached $16 billion in 2015, with a minimum of $3.8 billion in nanotechnology R&D being invested each year. Global funding for emerging nanotechnology increased by 45% per year in recent years, with product sales exceeding $1 trillion in 2013. As the nanomedicine industry continues to grow, it is expected to have a significant impact on the global economy. This book provides clear, colorful and simple illustrations, tables, and case studies to clearly convey the content to a general audience and reader. This book also discusses the development of nanobiomaterials from biogenic (biological sources) systems for healthcare and disease therapies. This book, therefore, is useful for researchers and academicians in the fields of nanotechnology, medicine, nano-biotechnology and pharmacology.




Biomimetic Medical Materials


Book Description

This volume outlines the current status in the field of biomimetic medical materials and illustrates research into their applications in tissue engineering. The book is divided into six parts, focusing on nano biomaterials, stem cells, tissue engineering, 3D printing, immune responses and intellectual property. Each chapter has its own introduction and outlines current research trends in a variety of applications of biomimetic medical materials. The biomimetic medical materials that are covered include functional hydrogels, nanoparticles for drug delivery and medicine, the 3D bioprinting of biomaterials, sensor materials, stem cell interactions with biomaterials, immune responses to biomaterials, biodegradable hard scaffolds for tissue engineering, as well as other important topics, like intellectual property. Each chapter is written by a team of experts. This volume attempts to introduce the biomimetic properties of biomedical materials within the context of our current understanding of the nanotechnology of nanoparticles and fibres and the macroscopic aspects of 3D bioprinting.




Nanobiomaterials


Book Description

Written by an international team of editors and contributors from renowned universities and institutes, this book addresses the latest research in the field of nanobiomaterials, covering nanotechnologies for their fabrication, developments in biomedical applications, and the challenges of biosafety in clinic uses. Clearly structured, the volume defines the scope and classification of the field, resulting in a broad overview from fundamental principles to current technological advances, and from materials synthesis to biomedical applications along with future trends.




Cardiovascular Regenerative Medicine


Book Description

This book is a comprehensive and up-to-date resource on the use of regenerative medicine for the treatment of cardiovascular disease. It provides a much-needed review of the rapid development and evolution of bio-fabrication techniques to engineer cardiovascular tissues as well as their use in clinical settings. The book incorporates recent advances in the biology, biomaterial design, and manufacturing of bioengineered cardiovascular tissue with their clinical applications to bridge the basic sciences to current and future cardiovascular treatment. The book begins with an examination of state-of-the-art cellular, biomaterial, and macromolecular technologies for the repair and regeneration of diseased heart tissue. It discusses advances in nanotechnology and bioengineering of cardiac microtissues using acoustic assembly. Subsequent chapters explore the clinical applications and translational potential of current technologies such as cardiac patch-based treatments, cell-based regenerative therapies, and injectable hydrogels. The book examines how these methodologies are used to treat a variety of cardiovascular diseases including myocardial infarction, congenital heart disease, and ischemic heart injuries. Finally, the volume concludes with a summary of the most prominent challenges and perspectives on the field of cardiovascular tissue engineering and clinical cardiovascular regenerative medicine. Cardiovascular Regenerative Medicine is an essential resource for physicians, residents, fellows, and medical students in cardiology and cardiovascular regeneration as well as clinical and basic researchers in bioengineering, nanomaterial and technology, and cardiovascular biology.