Nanobiomaterials Science, Development and Evaluation


Book Description

Nanobiomaterials Science, Development and Evaluation examines the practical aspects of producing nanostructured biomaterials for a range of applications. With a strong focus on materials, such as metals, ceramics, polymers, and composites, the book also examines nanostructured coatings and toxicology aspects. Chapters in Part One look at materials classes and their synthesis with information on all major material groups. Part Two focuses on nanostructured coatings and practical aspects associated with the use of nanobiomaterials in vivo. This book brings together the work of international contributors who are actively engaged on the forefront of research in their respective disciplines, and is a valuable resource for materials scientists in academia, industry, and all those who wish to broaden their knowledge in the allied field. Focuses on the synthesis and evaluation techniques for a range of nanobiomaterials Examines nanostructured inorganic coatings for biomaterials Discusses issues related to the toxicology of nanobiomaterials Presents the practical aspects of nanobiomaterials




Nanobiomaterials


Book Description

Nanobiomaterials: Nanostructured materials for biomedical applications covers an extensive range of topics related to the processing, characterization, modeling, and biomedical applications of nanostructured ceramics, polymers, metals, composites, self-assembled materials, and macromolecules. Novel approaches for bottom-up and top-down processing of nanostructured biomaterials are highlighted. In addition, innovative techniques for characterizing the in vitro behavior and in vivo behavior of nanostructured biomaterials are considered. Applications of nanostructured biomaterials in dentistry, drug delivery, medical diagnostics, surgery and tissue engineering are examined. Provides a concise description of the materials and technologies used in the development of nanostructured biomaterials Provides industrial researchers with an up-to-date and handy reference on current topics in the field of nanostructured biomaterials Includes an integrated approach that is used to discuss both the biological and engineering aspects of nanostructured biomaterials




Nanobiomaterials


Book Description

There is a continuous exchange of ideas taking place at the border of the biological and physical sciences in many areas of nanoscience. Nanotechnology uses biomimetic or bio-inspired processes to produce nanosized materials for applications in biology and other fields. In return, the fruits of nanotechnology are applied to expanding areas of biomedical and therapeutic processes, such as new nanostructures and scaffolds for tissue engineering or targeted drug delivery. In this way, nanobiotechnology serves as a bridge between nano and bio, with nanoscale materials providing the building blocks for the construction of the "bridge." Nanobiomaterials: Development and Applications gives you a broad, interdisciplinary view of current developments as well as new findings and applications in bionanomaterials. The book brings together the work of international contributors who are actively engaged at the forefront of research in their respective disciplines. Organized into four parts, this book explores the preparation and characterization of nanomaterials, new preparation routes of soft nanomaterials using biomolecules, nano- and microscale hybridization of materials, and nanotoxicity. The contributors cover a diverse set of topics, including: Biomimetic synthesis Bioimaging and cancer diagnosis Photodynamic therapy Bioconjugated carbon nanotube DNA transfection and tumor targeting Magnetically induced hyperthermia Cytotoxity mechanisms and their potential use in therapy Virus-enabled manufacturing of functional nanomaterials Biocatalitic nanosystems and enzyme immobilization Tissue engineering The fabrication of hybrid microswimmers Bionanomaterial applications in environmental remediation Each chapter is richly illustrated and includes an extensive list of references to guide you toward further research. Combining bionanomaterial development and applications, the book clearly demonstrates the importance of these materials to biotechnology, biomedicine, and environmental remediation. It offers an accessible overview for students, industrial researchers, pharmaceutical innovators, medical and public health personnel, environmental scientists and engineers, and anyone interested in this interdisciplinary field.




Nanobiomaterials Handbook


Book Description

Nanobiomaterials exhibit distinctive characteristics, including mechanical, electrical, and optical properties, which make them suitable for a variety of biological applications. Because of their versatility, they are poised to play a central role in nanobiotechnology and make significant contributions to biomedical research and healthcare. Nanobio




Nanostructure Science and Technology


Book Description

Timely information on scientific and engineering developments occurring in laboratories around the world provides critical input to maintaining the economic and technological strength of the United States. Moreover, sharing this information quickly with other countries can greatly enhance the productivity of scientists and engineers. These are some of the reasons why the National Science Foundation (NSF) has been involved in funding science and technology assessments comparing the United States and foreign countries since the early 1980s. A substantial number of these studies have been conducted by the World Technology Evaluation Center (WTEC) managed by Loyola College through a cooperative agreement with NSF. The National Science and Technology Council (NSTC), Committee on Technology's Interagency Working Group on NanoScience, Engineering and Technology (CT/IWGN) worked with WTEC to develop the scope of this Nanostucture Science and Technology report in an effort to develop a baseline of understanding for how to strategically make Federal nanoscale R&D investments in the coming years. The purpose of the NSTC/WTEC activity is to assess R&D efforts in other countries in specific areas of technology, to compare these efforts and their results to U. S. research in the same areas, and to identify opportunities for international collaboration in precompetitive research. Many U. S. organizations support substantial data gathering and analysis efforts focusing on nations such as Japan. But often the results of these studies are not widely available. At the same time, government and privately sponsored studies that are in the public domain tend to be "input" studies.




Interim Report on the Second Triennial Review of the National Nanotechnology Initiative


Book Description

Nanotechnology has become one of the defining ideas in global R&D over the past decade. In 2001 the National Nanotechnology Initiative (NNI) was established as the U.S. government interagency program for coordinating nanotechnology research and development across deferral agencies and facilitating communication and collaborative activities in nanoscale science, engineering, and technology across the federal government. The 26 federal agencies that participate in the NNI collaborate to (1) advance world-class nanotechnology research and development; (2) foster the transfer of new technologies into products for commercial and public benefit; (3) develop and sustain educational resources, a skilled workforce and the supporting infrastructure and tools to advance nanotechnology; and (4) support the responsible development of nanotechnology. As part of the third triennial review of the National Nanotechnology Initiative, the Committee on Triennial Review of the National Nanotechnology Initiative: Phase II was asked to provide advice to the Nanoscale Science, Engineering, and Technology (NSET) Subcommittee and the National Nanotechnology Coordination Office in three areas: Task 1 - Examine the role of the NNI in maximizing opportunities to transfer selected technologies to the private sector, provide an assessment of how well the NNI is carrying out this role, and suggest new mechanisms to foster transfer of technologies and improvements to NNI operations in this area where warranted. Task 2 - Assess the suitability of current procedures and criteria for determining progress towards NNI goals, suggest definitions of success and associated metrics, and provide advice on those organizations (government or non-government) that could perform evaluations of progress. Task 3 - Review NNI's management and coordination of nanotechnology research across both civilian and military federal agencies. Interim Report for the Triennial Review of the National Nanotechnology Initiative, Phase II offers initial comment on the committee's approach to Task 2 and offers initial comments on the current procedures and criteria for determining progress toward and achievement of the desired outcomes.




A Matter of Size


Book Description

The National Nanotechnology Initiative (NNI) was created in 2000 to focus and coordinate the nanoscience and nanotechnology research and development (R&D) activities being funded by several federal agencies. The purpose of the NNI is to marshal these research activities in order to accelerate responsible development and deployment of nanotechnology for economic benefit and national security. To take stock of the progress of the NNI, Congress, in P. L. 108-153, the 21st Century Nanotechnology Research and Development Act, directed the National Research Council to carry out a review of the program every three years. This report presents the results of the first of those reviews, which addresses the economic impact of nanotechnology developments and provides a benchmark of U.S. R&D efforts relative to those undertaken by foreign competitors. In addition, the report offers an assessment of the current status of responsible development of nanotechnology and comments on the feasibility of molecular self-assembly.




Smart Nanomaterials in Biomedical Applications


Book Description

With the start of 2020, the wrath of pandemic challenged the scientific community to develop more advanced drug delivery approaches for biomedical applications, endowing conventional drugs with additional therapeutic benefits and minimum side effects. Although significant advancements have been done in the field of drug delivery, there is a need to focus towards strategizing novel and improved drug delivery systems that should be convenient and cost-effective to the patients, and simultaneously they should also provide financial benefits to pharmaceutical companies. Controlled drug delivery technology offers ample opportunities and scope for improvising the therapeutic efficacy of drugs via optimizing the drug release rate and time. For this endeavour, smart nanomaterials have served as remarkable candidates for biomedical applications, owing to their ground-breaking properties and design. The development of such nanomaterials requires a broad knowledge related to their physio-chemical properties, molecular structure, mechanisms by which the nanomaterials interact with the cells, and methods by which drugs are released at the site of action. This knowledge must also be allied with the knowledge of signaling crosstalk mechanisms that are modulated by the nanomaterial-drugs composite. It can be anticipated that these emerging drug delivery technologies can facilitate the world to successfully encounter such pandemic outbursts in the future in a cost-effective and time-effective manner. The chapters in this book deal with the advanced technologies and approaches that can benefit advanced students, researchers, and industry experts in developing smart and intelligent nanomaterials for future biomedical applications, and development, manufacturing, and commercialization for controlled and targeted drug delivery.




Triennial Review of the National Nanotechnology Initiative


Book Description

Nanoscale science, engineering, and technology, often referred to simply as "nanotechnology," is the understanding, characterization, and control of matter at the scale of nanometers, the dimension of atoms and molecules. Advances in nanotechnology promise new materials and structures that are the basis of solutions, for example, for improving human health, optimizing available energy and water resources, supporting a vibrant economy, raising the standard of living, and increasing national security. Established in 2001, the National Nanotechnology Initiative (NNI) is a coordinated, multiagency effort with the mission to expedite the discovery, development, and deployment of nanoscale science and technology to serve the public good. This report is the latest triennial review of the NNI called for by the 21st Century Nanotechnology Research and Development Act of 2003. It examines and comments on the mechanisms in use by the NNI to advance focused areas of nanotechnology towards advanced development and commercialization and on the physical and human infrastructure needs for successful realization in the United States of the benefits of nanotechnology development.




Bio-manufactured Nanomaterials


Book Description

This book is based on the principles, limitations, challenges, improvements and applications of nanotechnology in medical science as described in the literature. It highlights various parameters affecting the synthesis of bio-nanomaterials and exclusive techniques utilized for characterizing the nanostructures for their potential use in biomedical and environmental applications. Moreover, biodegradable synthesis of nanomaterials is regarded as an important tool to reduce the destructive effects associated with the traditional methods of synthesis for nanostructures commonly utilized in laboratory and industry and as well as academic scale of innovative research foundation.