Nanocarbon-Inorganic Hybrids


Book Description

Nanocarbon-Inorganic Hybrids is dedicated exclusively to the new family of functional materials, covering a multidisciplinary research field that combines materials science, chemistry and physics with nanotechnology and applied energy science. It provides a concise introduction into fundamental principles of nanocarbons, defines hybrids and composites, explains the physics behind sustainability, and illustrates requirements for successful implementation in energy applications. It further reviews the current research on developing concepts for designing nanocarbon hybrids, unravels mechanistic details of interfacial electron transfer processes and highlights future challenges and perspectives associated with exploiting these exciting new materials in commercial energy applications and beyond. This comprehensively written book is indispensable for Master and PhD students seeking to become familiar with a modern fi eld of knowledge-driven material science as well as for senior researchers and industrial staff scientists who explore the frontiers of knowledge.




Nanocarbon and Its Composites


Book Description

Nanocarbon and Its Composites: Preparation, Properties and Applications provides a detailed and comprehensive review of all major innovations in the field of nanocarbons and their composites, including preparation, properties and applications. Coverage is broad and quite extensive, encouraging future research in carbon-based materials, which are in high demand due to the need to develop more sustainable, recyclable and eco-friendly methods for materials. Chapters are written by eminent scholars and leading experts from around the globe who discuss the properties and applications of carbon-based materials, such as nanotubes (buckytubes), fullerenes, cones, horns, rods, foams, nanodiamonds and carbon black, and much more. Chapters provide cutting-edge, up-to-date research findings on the use of carbon-based materials in different application fields and illustrate how to achieve significant enhancements in physical, chemical, mechanical and thermal properties. - Demonstrates systematic approaches and investigations from design, synthesis, characterization and applications of nanocarbon based composites - Aims to compile information on the various aspects of synthesis, properties and applications of nano-carbon based materials - Presents a useful reference and technical guide for university academics and postgraduate students (Masters and Ph.D.)




New Polymer Nanocomposites for Environmental Remediation


Book Description

New Polymer Nanocomposites for Environmental Remediation summarizes recent progress in the development of materials' properties, fabrication methods and their applications for treatment of contaminants, pollutant sensing and detection. This book presents current research into how polymer nanocomposites can be used in environmental remediation, detailing major environmental issues, and key materials properties and existing polymers or nanomaterials that can solve these issues. The book covers the fundamental molecular structure of polymers used in environmental applications, the toxicology, economy and life-cycle analysis of polymer nanocomposites, and an analysis of potential future applications of these materials. Recent research and development in polymer nanocomposites has inspired the progress and use of novel and cost-effective environmental applications. - Presents critical, actionable guidelines to the structure and property design of nanocomposites in environmental remediation - Focuses on taking technology out of the lab and into the real world - Summarizes the latest developments in polymer nanocomposites and their applications in catalytic degradation, adsorptive removal and detection of contaminants in the environment - Enables researchers to stay ahead of the curve, with a full discussion of regulatory issues and potential new applications and materials in this area




Electrocatalytic Materials


Book Description




Nanoenergy


Book Description

This book discuss the recent advances and future trends of nanoscience in solar energy conversion and storage. This second edition revisits and updates all the previous book chapters, adding the latest advances in the field of Nanoenergy. Four new chapters are included on the principles and fundamentals of artificial photosynthesis using metal transition semiconductors, perovskite solar cells, hydrogen storage and neutralization batteries. More fundamental aspects can be found in this book, increasing the comparison between theory-experimental achievements and latest developments in commercial devices.




Current Trends and Future Developments on (Bio-) Membranes


Book Description

Current Trends and Future Developments in (Bio-) Membranes: Renewable Energy Integrated with Membrane Operations offers an overview of advanced technologies in the field of water desalination, wastewater treatment and hydrogen production that is coupled with renewable energy sources. Membrane processes are well-recognized technologies in the field of water and wastewater treatment. This book reviews their potential and lists new technologies which allow for the use of solar, hydroelectric, wind, hydrothermal and other forms of renewable energy with the same effect. In addition, it highlights what has already been achieved in the integration of membrane reactors and energy produced by biomass. - Provides an overview of the interconnections between membrane technology and renewable energy sources - Provides a comprehensive review of advanced research on membrane processes for water desalination, wastewater treatment and hydrogen production - Relates the various processes to energy sources, including solar, wind, biomass and geothermal energy - Addresses key issues involved in the use of renewable energy in wastewater treatment




Laser-induced Graphene


Book Description

LIG is a revolutionary technique that uses a common CO2 infrared laser scriber, like the one used in any machine shop, for the direct conversion of polymers into porous graphene under ambient conditions. This technique combines the preparation and patterning of 3D graphene in a single step, without the use of wet chemicals. The ease in the structural engineering and excellent mechanical properties of the 3D graphene obtained have made LIG a versatile technique for applications across many fields. This book compiles cutting-edge research on LIG by different research groups all over the world. It discusses the strategies that have been developed to synthesize and engineer graphene, including controlling its properties such as porosity, composition, and surface characteristics. The authors are pioneers in the discovery and development of LIG and the book will appeal to anyone involved in nanotechnology, chemistry, environmental sciences, and device development, especially those with an interest in the synthesis and applications of graphene-based materials.




TiO2 Nanoparticles


Book Description

A unique book that summarizes the properties, toxicology, and biomedical applications of TiO2-based nanoparticles Nanotechnology is becoming increasingly important for products used in our daily lives. Nanometer-sized titanium dioxide (TiO2) are widely used in industry for different purposes, such as painting, sunscreen, printing, cosmetics, biomedicine, and so on. This book summarizes the advances of TiO2 based nanobiotechnology and nanomedicine, covering materials properties, toxicological research, and biomedical application, such as antibacter, biosensing, and cancer theranostics. It uniquely integrates the TiO2 applications from physical properties, toxicology to various biomedical applications, and includes black TiO2 based cancer theranostics. Beginning with a comprehensive introduction to the properties and applications of nanoparticles, TiO2 Nanoparticles: Applications in Nanobiotechnology, Theranostics and Nanomedicine offers chapters on: Toxicity of TiO2 Nanoparticles; Antibacterial Applications of TiO2 Nanoparticles; Surface Enhanced Raman Spectrum of TiO2 Nanoparticle for Biosensing (TiO2 Nanoparticle Served as SERS Sensing Substrate); TiO2 as Inorganic Photosensitizer for Photodynamic Therapy; Cancer Theranostics of Black TiO2 Nanoparticles; and Neurodegenerative Disease Diagnostics and Therapy of TiO2-Based Nanoparticles. This title: Blends the physical properties, toxicology of TiO2 nanoparticles to the many biomedical applications Includes black TiO2 based cancer theranostics in its coverage Appeals to a broad audience of researchers in academia and industry working on nanomaterials-based biosensing, drug delivery, nanomedicine TiO2 Nanoparticles: Applications in Nanobiotechnology, Theranostics and Nanomedicine is an ideal book for medicinal chemists, analytical chemists, biochemists, materials scientists, toxicologists, and those in the pharmaceutical industry.




Nanocarbon-Inorganic Hybrids


Book Description

Nanocarbon-Inorganic Hybrids is dedicated exclusively to the new family of functional materials, covering a multidisciplinary research field that combines materials science, chemistry and physics with nanotechnology and applied energy science. It provides a concise introduction into fundamental principles of nanocarbons, defines hybrids and composites, explains the physics behind sustainability, and illustrates requirements for successful implementation in energy applications. It further reviews the current research on developing concepts for designing nanocarbon hybrids, unravels mechanistic details of interfacial electron transfer processes and highlights future challenges and perspectives associated with exploiting these exciting new materials in commercial energy applications and beyond. This comprehensively written book is indispensable for Master and PhD students seeking to become familiar with a modern fi eld of knowledge-driven material science as well as for senior researchers and industrial staff scientists who explore the frontiers of knowledge.




Functionalization of Graphene


Book Description

All set to become the standard reference on the topic, this book covers the most important procedures for chemical functionalization, making it an indispensable resource for all chemists, physicists, materials scientists and engineers entering or already working in the field. Expert authors share their knowledge on a wide range of different functional groups, including organic functional groups, hydrogen, halogen, nanoparticles and polymers.