NanoCellBiology of Secretion


Book Description

Understanding live cells at the single molecule level is the most important and single major challenge facing biology and medicine today. Over the past 15 years, there has been a renewed understanding of living cells at the molecular level. Atomic Force Microscopy, Laser Force Microscopy, single secretory vesicle patch clamp studies, highresolution electron microscopy, and x-ray diffraction, are some of the tools now being used to unravel the intricacies of a living cell at the molecular level. Opening with an explanation of Materials and Methods, NanoCellBiology then moves through discussions of porosome discovery, calcium and SNARE-induced fusion, and vesicle swelling before winding up in a final chapter of conclusions and future studies. Succinctly packaged as SpringerBrief, this book is a must for those studying or conducting research in cell biology, biochemistry or nanobiology/nanotechnology. This book will be invaluable to faculty & graduate students involved in Nano Courses; Cell Biology Courses; Biophysics Courses; and Biochemistry Courses as well as practicing Cell Biologists, Biochemists and BioPhysicists.




Methods in Nano Cell Biology


Book Description

Understanding live cells at the single molecule level is the most important and single major challenge facing biology and medicine today. Nanobiology focuses on the properties and structure of complex assemblies of biomolecules—biochips and molecular motors, for example—in conjunction with distinctive surfaces, rods, dots, and materials of nanoscience. Nano Cell Biology will describe the current applications of nanobiology to the study of the structure, function, and metabolic processes of cells. - Provides historical background on this newly emerging field - Covers the latest application of new instrumentation in the field - Detailed protocols in the study of live cells at the nanometer level - Discusses future technologies and their applications in the study of living cells




NanoCellBiology


Book Description

This book provides a comprehensive understanding of the discovery of a new cellular structure the "porosome," which is the universal secretory machinery in cells; the protein assembly, biomineralization, and biomolecular interactions; the molecular evolution of protein structure; the use of magnetic nanoparticles for transformative application in medicine and therapy, and the new and novel imaging approach of electrical impedance spectroscopy in biology. It be used for college courses in nanomedicine, nano cell biology, advanced nanotechnology, and biotechnology at the undergraduate and graduate level.




Life at the Nanoscale


Book Description

Proceeding from basic fundamentals to applications, this volume provides a comprehensive overview of the use of AFM and related scanning probe microscopies for cell surface analysis. It covers all cell types, from viruses and protoplasts to bacteria and animal cells. It also discusses a range of advanced AFM modalities, including high-resolution imaging, nanoindentation measurements, recognition imaging, and single-molecule and single-cell force spectroscopy. The book covers methodologies for preparing and analyzing cells and membranes of all kinds and highlights recent examples to illustrate the power of AFM techniques in life sciences and nanomedicine.




Micro/Nano Cell and Molecular Sensors


Book Description

This book focuses on cell- and molecule-based biosensors using micro/nano devices as transducers. After providing basic information on micro/nano cell- and molecule-based biosensors, it introduces readers to the basic structures and properties of micro/nano materials and their applications. The topics covered provide a comprehensive review of the current state of the art in micro/nano cell- and molecule-based biosensors as well as their future development trends, ensuring the book will be of great interest to the interdisciplinary community active in this area: researchers, engineers, biologists, medical scientists, and all those whose work involves related interdisciplinary research and applications. Dr. Ping Wang is a Professor in Department of Biomedical Engineering at Zhejiang University, Hangzhou, China. Dr. Chunsheng Wu is a Professor in Medical School at Xi’an Jiaotong University, Xi’an, China. Dr. Ning Hu is an Assistant researcher in Department of Biomedical Engineering at Zhejiang University and a Postdoctoral researcher in Medical School at Harvard University, Boston, USA. Dr. K. Jimmy Hsia is a Professor in Department of Biomedical Engineering at Carnegie Mellon University, Pittsburgh, USA.




Cellular Nanomachines


Book Description

In this book, the major paradigm-shifting discoveries made in the past century on key cellular nanomachines are described in great detail: their complex yet precise and elegant design and function, as well as the diseases linked to their dysfunction and the therapeutic approaches to overcome them. The major focus of this book is the “porosome” nanomachine, the universal secretory portal in cells. This is an ideal book for students, researchers, and professionals in the fields of nanoscience and nanotechnology.




The Minimal Cell


Book Description

In the last ten years there has been a considerable increase of interest on the notion of the minimal cell. With this term we usually mean a cell-like structure containing the minimal and sufficient number of components to be defined as alive, or at least capable of displaying some of the fundamental functions of a living cell. In fact, when we look at extant living cells we realize that thousands of molecules are organized spatially and functionally in order to realize what we call cellular life. This fact elicits the question whether such huge complexity is a necessary condition for life, or a simpler molecular system can also be defined as alive. Obviously, the concept of minimal cell encompasses entire families of cells, from totally synthetic cells, to semi-synthetic ones, to primitive cell models, to simple biomimetic cellular systems. Typically, in the experimental approach to the construction of minimal the main ingredient is the compartment. Lipid vesicles (liposomes) are used to host simple and complex molecular transformations, from single or multiple enzymic reactions, to polymerase chain reactions, to gene expression. Today this research is seen as part of the broader scenario of synthetic biology but it is rooted in origins of life studies, because the construction of a minimal cell might provide biophysical insights into the origins of primitive cells, and the emergence of life on earth. The volume provides an overview of physical, biochemical and functional studies on minimal cells, with emphasis to experimental approaches. 15 International experts report on their innovative contributions to the construction of minimal cells.




Nanotechnology in Dermatology


Book Description

Nanotechnology in Dermatology is the first book of its kind to address all of the important and rapidly growing aspects of nanotechnology as it relates to dermatology. In the last few years there has been an explosion in research and development for products and devices related to nanotechnology, including numerous applications for consumers, physicians, patients, and industry. Applications are underway in medicine and dermatology for the early detection, diagnosis, and targeted therapy of disease, and nanodesigned materials and devices are expected to be faster, smaller, more powerful, more efficient, and more versatile than their traditional counterparts. Written by experts working in this exciting field, Nanotechnology in Dermatology specifically addresses nanotechnology in consumer skin care products, in the diagnosis of skin disease, in the treatment of skin disease, and the overall safety of nanotechnology. The book also discusses future trends of this ever-growing and changing field, providing dermatologists, pharmaceutical companies, and consumer cosmetics companies with a clear understanding of the advantages and challenges of nanotechnology today.




Nanoparticle–Protein Corona


Book Description

Nanoparticles have numerous biomedical applications including drug delivery, bone implants and imaging. A protein corona is formed when proteins existing in a biological system cover the nanoparticle surface. The formation of a nanoparticle–protein corona, changes the behaviour of the nanoparticle, resulting in new biological characteristics and influencing the circulation lifetime, accumulation, toxicity, cellular uptake and agglomeration. This book provides a detailed understanding of nanoparticle–protein corona formation, its biological significance and the factors that govern the formation of coronas. It also explains the impact of nanoparticle–protein interactions on biological assays, ecotoxicity studies and proteomics research. It will be of interest to researchers studying the application of nanoparticles as well as toxicologists and pharmaceutical chemists.




Transmission Electron Microscopy Characterization of Nanomaterials


Book Description

Third volume of a 40volume series on nanoscience and nanotechnology, edited by the renowned scientist Challa S.S.R. Kumar. This handbook gives a comprehensive overview about Transmission electron microscopy characterization of nanomaterials. Modern applications and state-of-the-art techniques are covered and make this volume an essential reading for research scientists in academia and industry.