Nanofabrication by Ion-Beam Sputtering


Book Description

Considerable attention has been paid to ion beam sputtering as an effective way to fabricate self-organized nano-patterns on various substrates. The significance of this method for patterning surfaces is that the technique is fast, simple, and less expensive. The possibility to create patterns on very large areas at once makes it even more attractive. This book reviews various fascinating results, understand the underlying physics of ion induced pattern formation, to highlight the potential applications of the patterned surfaces, and to explore the patterning behavior by different irradiation parameters in order to create desired surface morphologies on specific materials.




Nanofabrication by Ion-Beam Sputtering


Book Description

Considerable attention has been paid to ion beam sputtering as an effective way to fabricate self-organized nano-patterns on various substrates. The significance of this method for patterning surfaces is that the technique is fast, simple, and less expensive. The possibility to create patterns on very large areas at once makes it even more attracti




Nanofabrication


Book Description

This second edition of Nanofabrication is one of the most comprehensive introductions on nanofabrication technologies and processes. A practical guide and reference, this book introduces readers to all of the developed technologies that are capable of making structures below 100nm. The principle of each technology is introduced and illustrated with minimum mathematics involved. Also analyzed are the capabilities of each technology in making sub-100nm structures, and the limits of preventing a technology from going further down the dimensional scale. This book provides readers with a toolkit that will help with any of their nanofabrication challenges.




Nanofabrication Using Focused Ion and Electron Beams


Book Description

This book comprehensively reviews the achievements and potentials of a minimally invasive, three-dimensional, and maskless surface structuring technique operating at nanometer scale by using the interaction of focused ion and electron beams (FIB/FEB) with surfaces and injected molecules.




Nanofabrication Handbook


Book Description

While many books are dedicated to individual aspects of nanofabrication, there is no single source that defines and explains the total vision of the field. Filling this gap, Nanofabrication Handbook presents a unique collection of new and the most important established approaches to nanofabrication. Contributors from leading research facilities and academic institutions around the world define subfields, offer practical instructions and examples, and pave the way for future research. Helping readers to select the proper fabricating technique for their experiments, the book provides a broad vision of the most critical problems and explains how to solve them. It includes basic definitions and introduces the main underlying concepts of nanofabrication. The book also discusses the major advantages and disadvantages of each approach and offers a wide variety of examples of cutting-edge applications. Each chapter focuses on a particular method or aspect of study. For every method, the contributors describe the underlying theoretical basis, resolution, patterns and substrates used, and applications. They show how applications at the nanoscale require a different process and understanding than those at the microscale. For each experiment, they elucidate key solutions to problems relating to materials, methods, and surface considerations. A complete resource for this rapidly emerging interdisciplinary field, this handbook provides practical information for planning the experiments of any project that employs nanofabrication techniques. It gives readers a foundation to enter the complex world of nanofabrication and inspires the scientific community at large to push the limits of nanometer resolution.




Nanofabrication Techniques


Book Description

Nanofabrication is the process of assembling structures at the nanoscale with unique properties. This book describes proficient, low-cost, and robust nanofabrication techniques to produce nanostructures. It presents information on nanofabrication technology principles, methodologies, equipment, and processes, as well as discusses the fabrication of new structures for new applications. The nanofabrication techniques reviewed are applicable to different engineering processes, nano-electromechanical systems, biosensors, nanomaterials, photonic crystals, devices, and new structures. This book is a useful resource for students and professionals, including engineers, scientists, researchers, technicians, and technology managers.




Nanofabrication


Book Description

This book provides the reader with the most up-to-date information and development in the Nanofabrication area. It presents a one-stop description at the introduction level on most of the technologies that have been developed which are capable of making structures below 100nm. Principles of each technology are introduced and illustrated with minimum mathematics involved. The book serves as a practical guide and first hand reference for those working in nanostructure fabrication.




Handbook of Manufacturing Engineering and Technology


Book Description

The Springer Reference Work Handbook of Manufacturing Engineering and Technology provides overviews and in-depth and authoritative analyses on the basic and cutting-edge manufacturing technologies and sciences across a broad spectrum of areas. These topics are commonly encountered in industries as well as in academia. Manufacturing engineering curricula across universities are now essential topics covered in major universities worldwide.




Micro and Nano Fabrication


Book Description

For Microelectromechanical Systems (MEMS) and Nanoelectromechanical Systems (NEMS) production, each product requires a unique process technology. This book provides a comprehensive insight into the tools necessary for fabricating MEMS/NEMS and the process technologies applied. Besides, it describes enabling technologies which are necessary for a successful production, i.e., wafer planarization and bonding, as well as contamination control.




The Physics of Micro/Nano-Fabrication


Book Description

In this revised and expanded edition, the authors provide a comprehensive overview of the tools, technologies, and physical models needed to understand, build, and analyze microdevices. Students, specialists within the field, and researchers in related fields will appreciate their unified presentation and extensive references.