Nanohybrid Materials for Water Purification


Book Description

This book comprehensively reviews the key topics in the area of nanocomposites and hybrid materials used for waste water treatment and purification. It covers materials chemistry, various synthesis approaches and properties of these nanomaterials for the different water purification techniques. It provides new direction to the readers to better understand the chemistry behind these materials and the methods to improve their properties. This book will be a very valuable reference source for graduates and postgraduates, engineers, research scholars (primarily in the field of material science, water, nanoscience and nanotechnology), material scientists, researchers in the water-related area, scientists working in water treatment plans and pollution mitigation industries.




Nanomaterials for Air and Water Purification


Book Description

Nanomaterials for Air and Water Purification A comprehensive primary resource for researchers interested in nanocomposites for environmental remediation In Nanomaterials for Air and Water Purification, a team of distinguished researchers delivers an expert compilation of resources dealing with nano-based research for air and water remediation. The editors have included works by reputed researchers covering characterization, fabrication, and applications. This book is intended as a primary reference for researchers in academia and industry to offer original insights into environmentally friendly polymers and their nanocomposites. It provides comprehensive discussions of the fundamentals, attributes, characteristics, and fabrication of the materials and composites relevant to these nanomaterials. Readers will also find: Thorough introductions to electrospun nanofiber membranes for effective air filtration and nanocomposite air filter membranes Comprehensive explorations of photocatalytic materials and technologies for air purification Practical discussions of opportunities for improving and protecting water supplies with nanomaterials Fulsome treatments of polymeric membranes incorporated with metal or metal oxide nanoparticles for water purification Perfect for environmental, polymer, and surface chemists, Nanomaterials for Air and Water Purification will also earn a place in the libraries of industry professionals with an interest in water and air purification.




Nanomaterials for Water Treatment and Remediation


Book Description

Offering a comprehensive view of water-treatment technologies, Nanomaterials for Water Treatment and Remediation explores recent developments in the use of advanced nanomaterials (ANMs) for water treatment and remediation. In-depth reaction mechanisms in water-treatment technologies, including adsorption, catalysis, and membrane filtration for water purification using ANMs, are discussed in detail. The book includes an investigation of the fabrication processes of nanostructured materials and the fundamental aspects of surfaces at the nanoscale. The book also covers the removal of water-borne pathogens and microbes through a photochemical approach. FEATURES Explains various chemical treatments for the removal and separation of hazardous dyes, organic pollutants, pharmaceuticals, and heavy metals from aqueous solutions, including adsorption, advanced oxidation process, and photocatalysis Discusses the rational design of nanoporous materials with a tunable pore structure and fabrication of nanomaterials by surface chemistry engineering Covers the role of nanomaterials-assisted oxidation and reduction processes, design of nano-assisted membrane-based separation, and multifunctional nanomaterials and nanodevices for water treatment Provides an understanding of the structure–activity relationship and stability of ANMs under critical experimental conditions Identifies potential challenges in the application of multifunctional ANMs for future research Nanomaterials for Water Treatment and Remediation is aimed at researchers and industry professionals in chemical, materials, and environmental engineering as well as related fields interested in the application of advanced materials to water treatment and remediation.




Aquananotechnology


Book Description

Aquananotechnology: Applications of Nanomaterials for Water Purification focuses on the impacts of, and opportunities for, the application of nanotechnology to enhance water quality and the societal concerns surrounding the widespread use of nanotechnology in the water arena. Sections cover the use of nano-sensors for the detection of water pollutants, the control of waterborne pathogens, and the use of nano-biochar coal fly composites for phytoremdtions wastewater pollutants. In addition, the book explores the uses of nanoadsorbents for heavy metals, dyes, Arsenic, pesticides, and water/wastewater remediation and decontamination of water from xenobiotics, bionanocomposites, metal oxides, silver, zinc nanoparticles, and carbon-based nanomaterials for wastewater treatment. In addition, the book covers the use of zerovalent iron nanomaterials and nanostructured mesoporous silica for water purification, along with nano-hydrogels to increase water efficiency and conservation. Finally, the socioeconomic impacts and risks of aquananotechnology in ecosystems are discussed. This book provides a detailed description of the ecological applications of nanomaterials in aquatic environments, offering a cogent analysis of both major applications and challenges. Shows how a range of nanomaterial types are being used for ecological applications in aquatic environments Explores the effects different types of nanomaterials have on a variety of ecosystems Assesses the major challenges of using nanotechnology to improve water quality on a mass scale




Hybrid Nanomaterials


Book Description

The book highlights applications of hybrid materials in solar energy systems, lithium ion batteries, electromagnetic shielding, sensing of pollutants and water purification. A hybrid material is defined as a material composed of an intimate mixture of inorganic components, organic components, or both types of components. In the last few years, a tremendous amount of attention has been given towards the development of materials for efficient energy harvesting; nanostructured hybrid materials have also been gaining significant advances to provide pollutant free drinking water, sensing of environmental pollutants, energy storage and conservation. Separately, intensive work on high performing polymer nanocomposites for applications in the automotive, aerospace and construction industries has been carried out, but the aggregation of many fillers, such as clay, LDH, CNT, graphene, represented a major barrier in their development. Only very recently has this problem been overcome by fabrication and applications of 3D hybrid nanomaterials as nanofillers in a variety of polymers. This book, Hybrid Nanomaterials, examines all the recent developments in the research and specially covers the following subjects: 3D hybrid nanomaterials nanofillers Hybrid nanostructured materials for development of advanced lithium batteries High performing hybrid nanomaterials for supercapacitor applications Nano-hybrid materials in the development of solar energy applications Application of hybrid nanomaterials in water purification Advanced nanostructured materials in electromagnetic shielding of radiations Preparation, properties and application of hybrid nanomaterials in sensing of environmental pollutants Development of hybrid fillers/polymer nanocomposites for electronic applications High performance hybrid filler reinforced epoxy nanocomposites State-of-the-art overview of elastomer/hybrid filler nanocomposites




Nanohybrid Materials for Treatment of Textiles Dyes


Book Description

This book covers the various aspects of nanohybrid materials and its composites for their application in treatment of toxic textiles dyes for cleaning the environment especially water and wastewater. The book first looks into the various preparation and characterization techniques for nanohybrid materials. The replacement of other conventional materials with highly efficient (high surface area, pore size, and chemical and mechanical strength) nanohybrid materials and their application in the field of environmental purification through treatment of textile dyes is highlighted in the later part of the book. The book caters to students, researchers, and scientists who are working in the field of wastewater treatment for incorporating novel materials to remove toxic textile dyes from contaminated wastewater.




Nanotechnology for Water Purification


Book Description

Nanotechnology is a highly inter- and multi- disciplinary application oriented research area. Not only does it find its use in nanomedicine, solar cells, sensor development and so on, but can also be effectively utilized to prevent water pollution. Nanostructured materials such as magnetic nanoparticles, carbon nanotubes, silver-impregnated cyclodextrin nanocomposites, nanostructured iron-zeolites, carbo-iron nanomaterials, photocatalytic titania nanoparticles, nanofiltration membranes and functionalized silica nanoparticles can be employed in water treatment to remove heavy metals, sediments, chemical effluents, charged particles, bacteria and other pathogens. This edited book comprises several review-style chapters written by world experts. The chapters are devoted to each of these nanotechnology based approaches: basic principles, practical applications, recent break-through and limitations associated with it. The last chapter covers the environmental risks of applying engineered nanomaterials for water purification. The wealth of information and insight offered in this book will be appealing to scientists and researchers over a wide range of disciplines.




Nanoscale Materials in Water Purification


Book Description

Novel nanoscale materials are now an essential part of meeting the current and future needs for clean water, and are at the heart of the development of novel technologies to desalinate water. The unique properties of nanomaterials and their convergence with current treatment technologies present great opportunities to revolutionize water and wastewater treatment. Nanoscale Materials for Water Purification brings together sustainable solutions using novel nanomaterials to alleviate the physical effects of water scarcity. This book covers a wide range of nanomaterials, including noble metal nanoparticles, magnetic nanoparticles, dendrimers, bioactive nanoparticles, polysaccharidebased nanoparticles, nanocatalysts, and redox nanoparticles for water purification. Significant properties and characterization methods of nanomaterials such as surface morphology, mechanical properties, and adsorption capacities are also investigated Explains how the unique properties of a range of nanomaterials makes them important water purification agents Shows how the use of nanotechnology can help create cheaper, more reliable, less energy-intensive, more environmentally friendly water purification techniques Includes case studies to show how nanotechnology has successfully been integrated into water purification system design




Water Treatment with New Nanomaterials


Book Description

Given that the threat of water shortage is expanding across the globe, the evolution of advanced technologies that enable water purification and, thus, water re-use in an energy and resource efficient manner are of great importance. In this regard, nanomaterials have been playing a crucial role and offering new opportunities for the construction of permeable and selective membranes and adsorbents. Such features are of paramount importance, particularly given the limited available energy resources. In this book, several recent studies are introduced that deal with water treatment via nanomaterial-based technologies. Such state-of-the-art technologies have employed nanomaterials that are made of polymer, composite, ceramic, and carbon, etc., and are shaped in various dimensionalities and forms such as particle (0D), fiber (1D), and film (2D–3D). The nanostructured membranes and adsorbents as well as photocatalytic nanosystems capable of active photodecomposition of organic pollutants, e.g., dyes, are the main focal points of discussion.




Nanomaterials for Water Remediation


Book Description

Nanomaterials are being used to develop more cost-effective and high-performance water treatment systems. In the field of water research, nanomaterials have been extensively utilised for the treatment and remediation, in addition to pollution prevention, of this vital resource. Remediation is the process of transforming the toxic substances in polluted water to below the limits stipulated by national/international guidelines. Volume 1 focuses on the carbon-based materials employed for water remediation. This book contains detailed information on various carbon materials including: carbon nanotubes, nanofibres, nanocellulose, dendrimers, mesoporous materials, molecularly imprinted materials, polymeric membranes and waste-derived nanocarbon materials. Polluted water is the main cause of severe environmental and health problems, and it is a well-established fact that carbon-based materials are very effective in the removal of both organic and inorganic pollutants from wastewater.This book covers the broad aspects of nanotechnology, environmental science and water research, and will be beneficial to researchers involved in these areas. In addition, this book will be of considerable interest to researchers who are working towards their graduate and postgraduate degrees in these areas. A platform for all researchers is also provided as it covers considerable background from recent literature, including the abbreviations used. This book covers the fundamental knowledge and recent advancements of the research and development in the fields of nanotechnology, environmental science and water research.