Nanoimprinting and its Applications


Book Description

Nanoimprinting has grown rapidly since it was proposed in 1995 by Prof. Chou. Now machines, resins, and molds for nanoimprinting are commercially available worldwide. The application fields of nanoimprinting are expanding to not only electronics but also optics, biology, and energy because nanoimprinting is a simple and convenient method for nanofabrication, and some devices are now being mass-produced. In the near future, the application of nanoimprinting in display and semiconductor fields is expected. This book explains the fundamentals of nanoimprinting in terms of materials, processes, and machines. It also describes the applications of nanoimprinting in optics, biology, energy, and electronics. In addition, it includes as many practical examples of nanoimprinting as possible. The fundamentals will help advanced undergraduate and graduate students understand nanoimprinting. The examples will be useful for both researchers working in nanoimprinting for the first time and engineers involved in research and development of various devices using nanostructures.




Nanocoatings and Ultra-Thin Films


Book Description

Coatings are used for a wide range of applications, from anti-fogging coatings for glass through to corrosion control in the aerospace and automotive industries. Nanocoatings and ultra-thin films provides an up-to-date review of the fundamentals, processes of deposition, characterisation and applications of nanocoatings.Part one covers technologies used in the creation and analysis of thin films, including chapters on current and advanced coating technologies in industry, nanostructured thin films from amphiphilic molecules, chemical and physical vapour deposition methods and methods for analysing nanocoatings and ultra-thin films. Part two focuses on the applications of nanocoatings and ultra-thin films, with chapters covering topics such as nanocoatings for architectural glass, packaging applications, conventional and smart nanocoatings for corrosion protection in aerospace engineering and ultra-thin membranes for sensor applications.With its distinguished editors and international team of contributors, Nanocoatings and ultra-thin films is an essential reference for professional engineers in the glazing, consctruction, electronics and transport industries, as well as all those with an academic research interest in the field. - Provides an up-to-date review of the fundamentals, processes of deposition, characterisation and applications of nanocoatings - Focuses on the applications of nanocoatings and ultra-thin films, covering topics such as nanocoatings for architectural glass, packaging applications and ultra-thin membranes for sensor applications - Includes chapters on current and advanced coating technologies in industry, nanostructured thin films from amphiphilic molecules, chemical and physical vapour deposition methods and methods for analysing nanocoatings and ultra-thin films




Nanoimprint Lithography: An Enabling Process for Nanofabrication


Book Description

Nanoimprint Lithography: An enabling process for nanofabrication presents a comprehensive description of nanotechnology that is one of the most promising low-cost, high-throughput technologies for manufacturing nanostructures, and an emerging lithography candidates for 22, 16 and 11 nm nodes. It provides the exciting, multidisciplinary field, offering a wide range of topics covering: principles, process, material and application. This book would be of specific interest for researchers and graduate students in the field of nanoscience, nanotechnology and nanofabrication, material, physical, chemical, electric engineering and biology. Dr. Weimin Zhou is an associate professor at Shanghai Nanotechnology Promotion Center, China.




Nanoimprint Lithography Technology and Applications


Book Description

Nanoimprint Lithography (NIL) has been an interesting and growing field in recent years since its beginnings in the mid-1990s. During that time, nanoimprinting has undergone significant changes and developments and nowadays is a technology used in R&D labs and industrial production processes around the world. One of the exciting things about nanoimprinting process is its remarkable versatility and the broad range of applications. This reprint includes ten articles, which represent a small glimpse of the challenges and possibilities of this technology. Six contributions deal with nanoimprint processes aiming at specific applications, while the other four papers focus on more general aspects of nanoimprint processes or present novel materials. Several different types of nanoimprint processes are used: plate-to-plate, roll-to-plate, and roll-to-roll. Plate-to-plate NIL here also includes the use of soft and flexible stamps. The application fields in this reprint are broad and can be identified as plasmonics, superhydrophibicity, biomimetics, optics/datacom, and life sciences, showing the broad applicability of nanoimprinting. The sections on the nanoimprint process discuss filling and wetting aspects during nanoimprinting as well as materials for stamps and imprinting.




Fundamentals and Applications of Nano Silicon in Plasmonics and Fullerines


Book Description

Fundamentals and Applications of Nano Silicon in Plasmonics and Fullerines: Current and Future Trends addresses current and future trends in the application and commercialization of nanosilicon. The book presents current, innovative and prospective applications and products based on nanosilicon and their binary system in the fields of energy harvesting and storage, lighting (solar cells and nano-capacitor and fuel cell devices and nanoLEDs), electronics (nanotransistors and nanomemory, quantum computing, photodetectors for space applications; biomedicine (substance detection, plasmonic treatment of disease, skin and hair care, implantable glucose sensor, capsules for drug delivery and underground water and oil exploration), and art (glass and pottery). Moreover, the book includes material on the use of advanced laser and proximal probes for imaging and manipulation of nanoparticles and atoms. In addition, coverage is given to carbon and how it contrasts and integrates with silicon with additional related applications. This is a valuable resource to all those seeking to learn more about the commercialization of nanosilicon, and to researchers wanting to learn more about emerging nanosilicon applications. - Features a variety of designs and operation of nano-devices, helping engineers to make the best use of nanosilicon - Contains underlying principles of how nanomaterials work and the variety of applications they provide, giving those new to nanosilicon a fundamental understanding - Assesses the viability of various nanoslicon devices for mass production and commercialization, thereby providing an important source of information for engineers




Nanoimprint Lithography


Book Description

Lithography, the fundamental fabrication process of semiconductor devices, has been playing a critical role in micro-nanofabrication technologies and manufacturing of Integrated Circuits (IC). Traditional optical lithography including contact and project photolithography has contributed significantly to the semiconductor device advancements. Currently, maintaining the rapid pace of half-pitch reduction requires overcoming the challenge of improving and extending the incumbent optical projection lithography technology while simultaneously developing alternative, next generation lithography (NGL) technologies to be used when optical projection lithography is no longer more economical than the alternatives. Furthermore, NIL is also one of the most promising low-cost, high-throughput technologies for manufacturing nanostructures as this highly technical book will give new insight to.




Nanoimprint Lithography Technology and Applications


Book Description

Nanoimprint Lithography (NIL) has been an interesting and growing field in recent years since its beginnings in the mid-1990s. During that time, nanoimprinting has undergone significant changes and developments and nowadays is a technology used in R&D labs and industrial production processes around the world. One of the exciting things about nanoimprinting process is its remarkable versatility and the broad range of applications. This reprint includes ten articles, which represent a small glimpse of the challenges and possibilities of this technology. Six contributions deal with nanoimprint processes aiming at specific applications, while the other four papers focus on more general aspects of nanoimprint processes or present novel materials. Several different types of nanoimprint processes are used: plate-to-plate, roll-to-plate, and roll-to-roll. Plate-to-plate NIL here also includes the use of soft and flexible stamps. The application fields in this reprint are broad and can be identified as plasmonics, superhydrophibicity, biomimetics, optics/datacom, and life sciences, showing the broad applicability of nanoimprinting. The sections on the nanoimprint process discuss filling and wetting aspects during nanoimprinting as well as materials for stamps and imprinting.




Nanofabrication


Book Description

A comprehensive edited volume on important and up-to-date nanolithography techniques and applications. The book includes an introduction on the importance of nanolithography in today's research and technology, providing examples of its applications. The remainder of the book is split into two sections. The first section contains the most important and established nanolithography techniques. As well as a detailed description of each technique, the reader can obtain useful information about the main advantages and drawbacks of each technique in terms of resolution, throughput, number of steps needed, cost, etc. At the end of this section, the reader will be able to decide which technique to use for different applications. The second section explores more specific applications of the nanolithography techniques previously described; as well as new techniques and applications. In some cases, the processes described in these chapters involve a combination of several nanolithography techniques. This section is less general but provides the reader with real examples.




Micro- and Nanophotonic Technologies


Book Description

Edited and authored by leading experts from top institutions in Europe, the US and Asia, this comprehensive overview of micro- and nanophotonics covers the physical and chemical fundamentals, while clearly focusing on the technologies and applications in industrial R&D. As such, the book reports on the four main areas of telecommunications and display technologies; light conversion and energy generation; light-based fabrication of materials; and micro- and nanophotonic devices in metrology and control.




Nanofabrication


Book Description

Many of the devices and systems used in modern industry are becoming progressively smaller and have reached the nanoscale domain. Nanofabrication aims at building nanoscale structures, which can act as components, devices, or systems, in large quantities at potentially low cost. Nanofabrication is vital to all nanotechnology fields, especially for the realization of nanotechnology that involves the traditional areas across engineering and science. This is the first book solely dedicated to the manufacturing technology in nanoscale structures, devices, and systems and is designed to satisfy the growing demands of researchers, professionals, and graduate students. Both conventional and non-conventional fabrication technologies are introduced with emphasis on multidisciplinary principles, methodologies, and practical applications. While conventional technologies consider the emerging techniques developed for next generation lithography, non-conventional techniques include scanning probe microscopy lithography, self-assembly, and imprint lithography, as well as techniques specifically developed for making carbon tubes and molecular circuits and devices. Sample Chapter(s). Chapter 1: Atom, Molecule, and Nanocluster Manipulations for Nanostructure Fabrication Using Scanning Probe Microscopy (3,320 KB). Contents: Atomic Force Microscope Lithography (N Kawasegi et al.); Nanowire Assembly and Integration (Z Gu & D H Gracias); Extreme Ultraviolet Lithography (H Kinoshita); Electron Projection Lithography (T Miura et al.); Electron Beam Direct Writing (K Yamazaki); Electron Beam Induced Deposition (K Mitsuishi); Focused Ion Beams and Interaction with Solids (T Ishitani et al.); Nanofabrication of Nanoelectromechanical Systems (NEMS): Emerging Techniques (K L Ekinci & J Brugger); and other papers. Readership: Researchers, professionals, and graduate students in the fields of nanoengineering and nanoscience.