Nanomaterials and Supramolecular Structures


Book Description

The text features experimental investigations which use a variety of modern methods and theoretical modeling of surface structures and physicochemical processes which occur at solid surfaces. Nanomaterials and Supramolecular Structures: Physics, Chemistry, and Applications is intended for specialists experienced in the fields of Nanochemistry, Nanophysics, Surface Chemistry (and Physics), synthesis of new nanostructural functional materials and their practical applications. It will also prove useful to students, post-graduates, researchers, and lecturers.




Nanostructures


Book Description

Nanostructures covers the main concepts and fundamentals of nanoscience emphasizing characteristics and properties of numerous nanostructures. This book offers a clear explanation of nanostructured materials via several examples of synthesis/processing methodologies and materials characterization. In particular, this book is targeted to a range of scientific backgrounds, with some chapters written at an introductory level and others with the in-depth coverage required for a seasoned professional. Nanostructures is an important reference source for early-career researchers and practicing materials scientists and engineers seeking a focused overview of the science of nanostructures and nanostructured systems, and their industrial applications. - Presents an accessible overview of the science behind, and industrial uses of, nanostructures. Gives materials scientists and engineers an understanding of how using nanostructures may increase material performance - Targeted to a wide audience, including graduate and postgraduate study with a didactic approach to aid fluid learning - Features an analysis of different nanostructured systems, explaining their properties and industrial applications




Core Concepts in Supramolecular Chemistry and Nanochemistry


Book Description

Supramolecular chemistry and nanochemistry are two strongly interrelated cutting edge frontiers in research in the chemical sciences. The results of recent work in the area are now an increasing part of modern degree courses and hugely important to researchers. Core Concepts in Supramolecular Chemistry and Nanochemistry clearly outlines the fundamentals that underlie supramolecular chemistry and nanochemistry and takes an umbrella view of the whole area. This concise textbook traces the fascinating modern practice of the chemistry of the non-covalent bond from its fundamental origins through to it expression in the emergence of nanochemistry. Fusing synthetic materials and supramolecular chemistry with crystal engineering and the emerging principles of nanotechnology, the book is an ideal introduction to current chemical thought for researchers and a superb resource for students entering these exciting areas for the first time. The book builds from first principles rather than adopting a review style and includes key references to guide the reader through influential work. supplementary website featuring powerpoint slides of the figures in the book further references in each chapter builds from first principles rather than adopting a review style includes chapter on nanochemistry clear diagrams to highlight basic principles




Nanomaterials and Nanochemistry


Book Description

Here is a brilliant book that covers the major aspects of nanomaterials production. It integrates the many and varied chemical, material and thermo-dynamical facets of production, offering readers a new and unique approach to the subject. The mechanical, optical, and magnetic characteristics of nanomaterials are also presented in detail. Nanomaterials are a fast developing field of research and this book serves as both a reference work for researchers and a textbook for graduate students.




Encyclopedia of Supramolecular Chemistry


Book Description

Crystallizing a rapidly expanding interdisciplinary field and one of the most popular and newsworthy areas in contemporary chemistry, this two-volume encyclopaedia offers authoritative information with user-friendly and high-quality articles.




Ultrafast Dynamics at the Nanoscale


Book Description

Ultrafast Dynamics at the Nanoscale provides a combined experimental and theoretical insight into the molecular-level investigation of light-induced quantum processes in biological systems and nanostructured (bio)assemblies. Topics include DNA photostability and repair, photoactive proteins, biological and artificial light-harvesting systems, plasmonic nanostructures, and organic photovoltaic materials, whose common denominator is the key importance of ultrafast quantum effects at the border between the molecular scale and the nanoscale. The functionality and control of these systems have been under intense investigation in recent years in view of developing a detailed understanding of ultrafast nanoscale energy and charge transfer, as well as fostering novel technologies based on sustainable energy resources. Both experiment and theory have made big strides toward meeting the challenge of these truly complex systems. This book, thus, introduces the reader to cutting-edge developments in ultrafast nonlinear optical spectroscopies and the quantum dynamical simulation of the observed dynamics, including direct simulations of two-dimensional optical experiments. Taken together, these techniques attempt to elucidate whether the quantum coherent nature of ultrafast events enhances the efficiency of the relevant processes and where the quantum–classical boundary sets in, in these high-dimensional biological and material systems. The chapters contain well-illustrated accounts of the authors’ research work, including didactic introductory material, and address a multidisciplinary audience from chemistry, physics, biology, and materials sciences. The book is, therefore, a must-have for graduate- and postgraduate-level researchers who wish to learn about molecular nanoscience from a combined spectroscopic and theoretical viewpoint.




Nanocomposite Structures and Dispersions


Book Description

Nanocomposite Structures and Dispersions summarizes the fundamentals and mechanistic approaches in preparation and characterization of colloidal nanoparticles and dispersions, providing the readers a systematic and coherent picture of the field. The book serves as an introduction to the interesting field of nanoscience based on polymer and metal colloidal nanoparticles, and also presents the basic knowledge of polymer colloids preparation. It places a special emphasis on polymer, inorganic and metal nanomaterials classified as nanoparticles, nanocrystals, nanorods, nanotubes, nanobelts, etc. deals with the chemistry of the reaction approaches by which polymer and metal particles are synthesized. The book explores both organic (synthetic and natural) and inorganic materials, as well as their hybrids. It describes in detail terms, definitions, theories, experiments, and techniques dealing with synthesis of polymer and metal particles. It also discusses a variety of synthetic approaches including emulsion, miniemulsion and microemulsion approaches, homogeneous and heterogeneous nucleation approaches under mild and high temperatures. There is also a chapter on modification and passivation of colloidal particles. This book would be of interest to chemical engineers, polymer chemists, organic chemists, colloid chemists, materials scientists and nanotechnologists. Although the text discusses nanoscience and nanotechnology from the viewpoint of a chemist, it would also appeal to those just entering the field and experts seeking information in other sub-fields. - Serves as a general introduction for those just entering the field and experts seeking information in other sub-fields - Variety of synthetic approaches is described including emulsion, miniemulsion and microemulsion approaches, hogeneous and heterogeneous nucleation approaches under mild and high temperatures - Focused on both the organic (synthetic and natural) and inorganic materials, and their hybrids




Organic Nanostructures


Book Description

Filling the need for a volume on the organic side of nanotechnology, this comprehensive overview covers all major nanostructured materials in one handy volume. Alongside metal organic frameworks, this monograph also treats other modern aspects, such as rotaxanes, catenanes, nanoporosity and catalysis. Detailed attention is paid to the chemistry, physics and materials science throughout, making this a definite must for all chemists.




Materials Nanoarchitectonics


Book Description

Materials Nanoarchitectonics: From Integrated Molecular Systems to Advanced Devices provides the latest information on the design and molecular manipulation of self-organized hierarchically structured systems using tailor-made nanoscale materials as structural and functional units. The book is organized into three main sections that focus on molecular design of building blocks and hybrid materials, formation of nanostructures, and applications and devices. Bringing together emerging materials, synthetic aspects, nanostructure strategies, and applications, the book aims to support further progress, by offering different perspectives and a strong interdisciplinary approach to this rapidly growing area of innovation. This is an extremely valuable resource for researchers, advanced students, and scientists in industry, with an interest in nanoarchitectonics, nanostructures, and nanomaterials, or across the areas of nanotechnology, chemistry, surface science, polymer science, electrical engineering, physics, chemical engineering, and materials science. - Offers a nanoarchitectonic perspective on emerging fields, such as metal-organic frameworks, porous polymer materials, or biomimetic nanostructures - Discusses different approaches to utilizing "soft chemistry" as a source for hierarchically organized materials - Offers an interdisciplinary approach to the design and construction of integrated chemical nano systems - Discusses novel approaches towards the creation of complex multiscale architectures




The Supramolecular Chemistry of Organic-Inorganic Hybrid Materials


Book Description

The combination of supramolecular chemistry, inorganic solids, and nanotechnology has already led to significant advances in many areas such as sensing, controlled motion, and delivery. By making possible an unprecedented tunability of the properties of nanomaterials, these techniques open up whole new areas of application for future supramolecular concepts. The Supramolecular Chemistry of Organic–Inorganic Hybrid Materials gathers current knowledge on the subject and provides an overview of the present state and upcoming challenges in this rapidly growing, highly cross- or interdisciplinary research field. The book details how these designed materials can improve existing materials or generate novel functional features such as chemical amplification, cooperative binding and signal enhancement that are difficult or not at all achievable by classical organic supramolecular chemistry. It also discusses issues related to nanofabrication or nanotechnology such as the directed and controlled assembly or disassembly, biomimetic functions and strategies, and the gating and switching of surface functions or morphology.