Nanomaterials: Evolution and Advancement Towards Therapeutic Drug Delivery (Part I)


Book Description

The development of a vector for the delivery of therapeutic drugs in a controlled and targeted fashion is still a major challenge in the treatment of many diseases. The conventional application of drugs may lead to many limitations including poor distribution, limited effectiveness, lack of selectivity and dose dependent toxicity. An efficient drug delivery system can address these problems. Recent nanotechnology advancements in the biomedical field have the potential to meet these challenges in developing drug delivery systems. Nanomaterials are changing the biomedical platform in terms of disease diagnosis, treatment and prevention. Nanomaterials aided drug delivery provides an advantage by enhancing aqueous solubility that leads to improved bioavailability, increased resistance time in the body, decreased side effects by targeting drugs to the specific location, reduced dose dependent toxicity and protection of drugs from early release. In this volume, the contributors have compiled reports of recent studies illustrating the promising nanomaterials that can work as drug carriers, that can navigate conventional physiological barriers. A detailed account of several types of nanomaterials including polymeric nanoparticles, liposomes, dendrimers, micelles, carbon nanomaterials, magnetic nanoparticles, solid lipid-based nanoparticles, silica nanomaterials and hydrogels for drug delivery is provided in separate chapters. The contributors also present a discussion on clinical aspects of ongoing research with insights towards future prospects of specific nanotechnologies. The book is an informative resource for scholars who seek updates in nanomedicine with reference to nanomaterials used in drug delivery systems.




Nanomaterials


Book Description

The development of a vector for the delivery of therapeutic drugs in a controlled and targeted fashion is still a major challenge in the treatment of many diseases. The conventional application of drugs may lead to many limitations including poor distribution, limited effectiveness, lack of selectivity and dose dependent toxicity. An efficient drug delivery system can address these problems. Recent nanotechnology advancements in the biomedical field have the potential to meet these challenges in developing drug delivery systems. Nanomaterials are changing the biomedical platform in terms of disease diagnosis, treatment and prevention. Nanomaterials aided drug delivery provides an advantage by enhancing aqueous solubility that leads to improved bioavailability, increased resistance time in the body, decreased side effects by targeting drugs to the specific location, reduced dose dependent toxicity and protection of drugs from early release. In this two-part book, the contributors have compiled reports of recent studies illustrating the promising nanomaterials that can work as drug carriers which can navigate conventional physiological barriers. A detailed account of several types of nanomaterials including polymeric nanoparticles, liposomes, dendrimers, micelles, carbon nanomaterials, magnetic nanoparticles, solid lipid-based nanoparticles, silica nanomaterials and hydrogels for drug delivery is provided in separate chapters. The contributors also present a discussion on clinical aspects of ongoing research with insights towards future prospects of specific nanotechnologies. Part II covers the following topics: · Solid lipid nanoparticles and nanostructured lipid carriers · Silica based nanomaterials · Hydrogels · Metallic nanoparticles · Computational and experimental binding interactions of drug and β-cyclodextrin · Clinical milestones in nanotherapeutics · Drug delivery systems based on poly(lactide-co-glycolide) and its copolymers The book set is an informative resource for scholars who seek updates in nanomedicine with reference to nanomaterials used in drug delivery systems.




Nanomaterials for Drug Delivery and Therapy


Book Description

Nanomaterials for Drug Delivery and Therapy presents recent advances in the field of nanobiomaterials and their important applications in drug delivery, therapy and engineering. The book offers pharmaceutical perspectives, exploring the development of nanobiomaterials and their interaction with the human body. Chapters show how nanomaterials are used in treatments, including neurology, dentistry and cancer therapy. Authored by a range of contributors from global institutions, this book offers a broad, international perspective on how nanotechnology-based advances are leading to novel drug delivery and treatment solutions. It is a valuable research resource that will help both practicing medics and researchers in pharmaceutical science and nanomedicine learn more on how nanotechnology is improving treatments. - Assesses the opportunities and challenges of nanotechnology-based drug delivery systems - Explores how nanotechnology is being used to create more efficient drug delivery systems - Discusses which nanomaterials make the best drug carriers




Metallic Nanoparticles for Health and the Environment


Book Description

Metallic Nanoparticles for Health and the Environment covers different routes of synthesis for metallic nanoparticles and their process variables. Both the functions and roles of these particles as a drug delivery system and diagnostic agent and other potential theranostic purposes against metabolic disorders, photocatalysis applications, as well as wastewater treatments, are discussed. The book compares the different properties of bulk metallic forms and their nanoparticulated forms. It discusses the mechanisms and impacts of different process variables in different synthesis routes, as well as emerging trends in clinics and so forth. Features: Covers different routes of synthesis to create metallic nanoparticles (MNPs) of different characteristics with reference to bulk forms of metals. Describes formulation parameters that have a significant effect on these MNPs including dimensions, morphology, mechanism, surface properties, and other characteristics. Discusses different roles and performances of MNPs in photothermal therapy, metabolic disorders, mechanisms in bacterial, fungal, and viral infections, and inflammatory pathways. Reviews the potential and emerging roles of different MNPs with site target delivery applications and genetic manipulation purposes. Examines the advantages and challenges of these MNPs against remediation of pollutants and toxicants, owing to their superior surface catalytic activities. This book is aimed at researchers and professionals in nanomaterials, pharmaceuticals, and drug delivery.




Nanostructures for Drug Delivery


Book Description

Nanostructures for Drug Delivery extensively covers the various nanostructured products that have been tested as carriers in target drug delivery systems. In addition, the book analyses the advantages of, and issues related to, using nanostructured materials in drug delivery systems, also detailing various nanocarrier preparation techniques. As delivering the drug to the target site is a major problem in providing effective treatment for many diseases, this book covers the latest advancements in numerous nanotechnological products that are being used in disease detection, controlled drug delivery, as biosensors, and in tissue engineering that have been developed for more efficient patient healthcare. Due to the versatility of nanostructured materials, it is now possible to deliver a drug at its target site in a more accurate and efficient way. This volume is an up-to-date, state-of-the-art work that highlights the principal mechanistic aspects related to the delivery of active nanoscale therapeutic agents (natural or synthetic) and their release profile in different environmental media. It highlights nanoscale encapsulation strategies and discusses both organic and inorganic nanomaterials as carriers and delivery platforms. - Demonstrates how nanostructures are successfully employed in drug delivery stems and as drug delivery agents, allowing biomaterials scientists and biochemists to create more effective drug delivery systems - Offers an overview of recent research into the use of nanostructures in drug delivery techniques in a cogent, synthesized way, allowing readers to quickly familiarize themselves with this area - Includes examples of how the application of nanostructures have improved the efficiency of drug delivery systems, showing medical scientists how they are beneficial




Silk-based Drug Delivery Systems


Book Description

Covering spider silk and silk worm cocoons, the editors elucidate the extraction, structure and properties of silk sericin and silk fibroin.




Cancer Nanotechnology


Book Description

Advances in Cancer Research, Volume 139, provides invaluable information on the exciting and fast-moving field of cancer research. Original reviews are presented on a variety of topics relating to the rapidly developing intersection between nanotechnology and cancer research, with unique sections in the new release focusing on Exosomes as a theranostic for lung cancer, Nanotechnology and cancer immunotherapy, Ultrasound imaging agents and delivery systems, Dendronized systems for the delivery of chemotherapeutics, Thermosensitive liposomes for image-guided drug delivery, Supramolecular Chemistry in Tumor Analysis and Drug Delivery, Gold nanoparticles for delivery of cancer therapeutics, and Single cell barcode microchip for cancer research and therapy. - Provides the latest information on cancer research - Offers outstanding and original reviews on a range of cancer research topics - Serves as an indispensable reference for researchers and students alike




Advanced Manufacturing Techniques for Engineering and Engineered Materials


Book Description

As technology advances, it is imperative to stay current in the newest developments made within the engineering industry and within material sciences. Trends in manufacturing such as 3D printing, casting, welding, surface modification, computer numerical control (CNC), non-traditional, Industry 4.0 ergonomics, and hybrid machining methods must be closely examined to utilize these important resources for the betterment of society. Advanced Manufacturing Techniques for Engineering and Engineered Materials provides a unified and complete overview about the recent and emerging trends, developments, and associated technology with scope for the commercialization of techniques specific to manufacturing materials. This book also reviews the various machining methods for difficult-to-cut materials and novel materials including matrix composites. Covering topics such as agro-waste, conventional machining, and material performance, this book is an essential resource for researchers, engineers, technologists, students and professors of higher education, industry workers, entrepreneurs, researchers, and academicians.




Nanotechnology Methods for Neurological Diseases and Brain Tumors


Book Description

Nanotechnology Methods for Neurological Diseases and Brain Tumors: Drug Delivery across the Blood-Brain Barrier compiles the latest (and future potential) treatment strategies for brain tumors and neurological diseases, in particular Alzheimer's, Parkinson's and stroke, those that bypass the blood/brain barrier. The current understanding of brain drug delivery and access is discussed in Chapter One, with the next section focusing on the implementation of the nose-to-brain intranasal route in brain-targeted drug delivery. In addition, nanotechnology-based brain drug delivery is covered in Chapter Three. This avenue offers impressive improvement in the treatment of neurological diseases and brain tumors by using bio-engineered systems that interact with biological systems at a molecular level. In Chapter Four, emphasis is placed on the need for brain-targeted experimental models that mimic disease conditions. Final chapters discuss the very latest advances in targeted treatment strategies for neurological diseases and brain tumors.




Ghee


Book Description

Ghee (clarified milk fat) is a dairy product composed mainly of milk fat and minor components, such as vitamins, minerals, and enzymes; and butter oil has a bland flavor, whereas ghee has a pleasing flavor. In 18 chapters, Ghee: Chemistry, Technology, and Health Aspects covers topics focusing on ghee chemistry and physicochemical properties, and ghee processing and applications, as well as ghee biosafety and health effects. Features: Explores the chemistry of ghee from different dairy sources Discusses ghee functional constituents and their health-enhancing potential Written by industry experts and international scientists Addresses ghee-growing applications in clinical nutrition, functional foods, pharmaceuticals, nutraceuticals, and cosmetics Authored by a team of experts, this book brings a diversity of lipid science developments to chemists, nutritionists, and researchers in the fields of food science, nutrition, food chemistry and technology, cosmetics, and nutraceuticals. This book is an essential textbook for healthy food developers as well as the research and development (R&D) researchers using milk fats. Meanwhile, it is a valuable reference work for edible fat and oil companies reformulating their products or developing new healthy products.