Nanomaterials and Nanosystems for Biomedical Applications


Book Description

Under a single cover, this book brings together various aspects of functional bioengineered materials and nanostructured biomaterials including commonly used implants and sustained release nanodevices. The book includes expert reviews on the advances and current problems associated with the implants and nanodevices. Containing recent citations and bibliographies, this book will be an indispensable source of information for new researchers and scientists.




Piezoelectric Nanomaterials for Biomedical Applications


Book Description

Nanoscale structures and materials have been explored in many biological applications because of their novel and impressive physical and chemical properties. Such properties allow remarkable opportunities to study and interact with complex biological processes. This book analyses the state of the art of piezoelectric nanomaterials and introduces their applications in the biomedical field. Despite their impressive potentials, piezoelectric materials have not yet received significant attention for bio-applications. This book shows that the exploitation of piezoelectric nanoparticles in nanomedicine is possible and realistic, and their impressive physical properties can be useful for several applications, ranging from sensors and transducers for the detection of biomolecules to “sensible” substrates for tissue engineering or cell stimulation.




Materials for Biomedical Engineering: Nanomaterials-based Drug Delivery


Book Description

Materials for Biomedical Engineering: Nanomaterials-Based Drug Delivery highlights the progress made in the field of nanostructures bioactive materials and their impact on efficient drug delivery towards personalized medicine. Drug delivery is a well investigated and challenging bio-medical field, with promising perspectives in medicine and engineering. This book brings together the latest research findings regarding nanostructured materials and their potential in designing highly efficient and personalized drug delivery systems. Provides a valuable resource of recent scientific progress, highlighting the most well-known applications of nanostructures in drug delivery systems Includes novel opportunities and ideas for developing or improving technologies in composites by companies, biomedical industries, and in related sectors Features at least 50% of references from the last 2-3 years




Nanoengineering Materials for Biomedical Uses


Book Description

This book fills the gap between fundamental and applied research in the use of nanomaterials in biomedical applications, covering the most relevant areas, such as the fundamental concepts of the preparation of nanostructures and regulatory requirements for their safe use in biomedical devices. It also critically discusses what has been achieved in the field, and what needs to be urgently addressed and reviews the state-of-the-art medical uses of nanomaterials for treating damaged organs and tissues. Combining the expertise of clinical researchers working in the field of tissue engineering and novel materials, the book explores the main topics regarding the characterization of materials, specific organ-oriented biomaterials and their applications, as well as regulations and safety. Further, it also examines recent advances, difficulties, and clinical requirements in terms of human bone, cornea, heart, skin and the nervous system, allowing readers to gain a clear and comprehensive understanding of current nanomaterial use in biomedical applications and devices, together with the challenges and future trends. This book is a valuable tool for multidisciplinary scientists and experts interested in fundamental concepts and synthetic routes for preparing nanomaterials. It is also of interest to students and researchers involved in cross-disciplinary research in nanomaterials for clinical applications and offers practical insights for clinicians as well as engineers and materials scientists working in nanoengineering.




Nanomaterials and Their Biomedical Applications


Book Description

This book highlights the evolution of, and novel challenges currently facing, nanomaterials science, nanoengineering, and nanotechnology, and their applications and development in the biological and biomedical fields. It details different nanoscale and nanostructured materials syntheses, processing, characterization, and applications, and considers improvements that can be made in nanostructured materials with their different biomedical applications. The book also briefly covers the state of the art of different nanomaterials design, synthesis, fabrication and their potential biomedical applications. It will be particularly useful for reading and research purposes, especially for science and engineering students, academics, and industrial researchers.




Biomedical Nanomaterials


Book Description

This book characterizes how to design and synthesize nanomaterials of an organic and mineral nature. The book also discusses the visualization of developed nanomaterials and their bio-applications, as well as describes the biomedical effects and environmental impact of nanomaterials. This is an ideal book for students studying biomedicine or the life sciences, as well as researchers and professionals in medicine, environmental protection, biotechnology, agriculture, and the food industry. More specifically, this book addresses the important nanomaterials and nanobiotechnologies that are used in those fields in biomedicine and life sciences.




Biomedical Applications of Graphene and 2D Nanomaterials


Book Description

Biomedical Applications of Graphene and 2D Nanomaterials provides a much-needed reference on the biomedical applications of 2D nanomaterials, as well as theoretical knowledge on their structure, physicochemical properties and biomedical applications. Chapters are dedicated to growth areas, such as size and shape-dependent chemical and physical properties and applications, such as in diagnostic and therapeutic products. The book also discusses the concept, development and preclinical studies of 2D nanomaterials-based biomedical tools, such as biosensors, artificial organs and photomedicine. Case studies and reports form the core of the book, making it an ideal resource on potential applications in biomedical science and engineering. This timely resource for scientists and engineers in this rapidly advancing field features contributions from over 30 leaders who address advanced methods and strategies for controlling the physical-chemical properties of 2D nanomaterials, along with expert opinions on a range of 2D nanomaterials that have therapeutic and diagnostic applications. Presents advanced methods and strategies for controlling the physical-chemical properties of 2D nanomaterials Provides state-of-the-art biomedical applications for 2D nanomaterials, including graphene and boron nitride Includes key information from a broad selection of subject areas for researchers in both materials, engineering and medicine




Carbon Nanomaterials for Biomedical Applications


Book Description

This book covers a wide range of topics relating to carbon nanomaterials, from synthesis and functionalization to applications in advanced biomedical devices and systems. As they possess unique and attractive chemical, physical, optical, and even magnetic properties for various applications, considerable effort has been made to employ carbon nanomaterials (e.g., fullerenes, carbon nanotubes, graphene, nanodiamond) as new materials for the development of novel biomedical tools, such as diagnostic sensors, imaging agents, and drug/gene delivery systems for both diagnostics and clinical treatment. Tremendous progress has been made and the scattered literature continues to grow rapidly. With chapters by world-renowned experts providing an overview of the state of the science as well as an understanding of the challenges that lie ahead, Carbon Nanomaterials for Biomedical Applications is essential reading not only for experienced scientists and engineers in biomedical and nanomaterials areas, but also for graduate students and advanced undergraduates in materials science and engineering, chemistry, and biology.




Bioengineered Nanomaterials


Book Description

Many varieties of new, complex diseases are constantly being discovered, which leaves scientists with little choice but to embrace innovative methods for controlling the invasion of life-threatening problems. The use of nanotechnology has given scientists an opportunity to create nanomaterials that could help medical professionals in diagnosing and treating problems quickly and effectively. Bioengineered Nanomaterials presents in-depth information on bioengineered nanomaterials currently being developed in leading research laboratories around the world. In particular, the book focuses on nanomaterials for biomedical applications. This collection brings together novel methodologies and strategies adopted in the research and development of bioengineered nanomaterials and technology. Renowned international researchers discuss topics including: Nanoemulsions as a vaccine adjuvant Bioceramic nanomaterials in medical applications Natural and synthetic nanoporous membranes for cell encapsulation therapy Inorganic nanoparticle materials for the controlled release of drugs Nanomedicine in brain tumor treatment Nanoparticles for the treatment of solid tumors and metastasis Near-infrared-resonant gold nanoshells and carbon nanotubes in tumor imaging Toxicity testing and bioapplications of silver nanoparticles Innovative approaches to improve bioactive properties and molecular signaling in cells to stimulate bone repair The book is written for readers from diverse backgrounds across chemistry, physics, materials science and engineering, medical science, pharmacy, biotechnology, and biomedical engineering. It offers a comprehensive view of cutting-edge research on nanomaterials of biotechnological importance.