Nanomaterials for Energy and Sensor Applications


Book Description

Nowadays, most of the research focuses on nanomaterials in which one of the dimensions falls in the 1-100 nm range. These nanomaterials can be thin films, quantum dots, nanowires, nanopyramids, and nanoclusters. Thus, nanomaterials are impacting almost all aspects of materials for various applications in emerging energy and sensor devices. The book comprises ten chapters and discusses nanomaterial applications in energy, solar cells, water splitting, sensors, etc. The book caters to budding researchers’ needs in synthesizing nanomaterials and post-graduate students.




Nanomaterials For Energy Conversion And Storage


Book Description

The use of nanomaterials in energy conversion and storage represents an opportunity to improve the performance, density and ease of transportation in renewable resources. This book looks at the most recent research on the topic, with particular focus on artificial photosynthesis and lithium-ion batteries as the most promising technologies to date. Research on the broad subject of energy conversion and storage calls for expertise from a wide range of backgrounds, from the most fundamental perspectives of the key catalytic processes at the molecular level to device scale engineering and optimization. Although the nature of the processes dictates that electrochemistry is a primary characterization tool, due attention is given to advanced techniques such as synchrotron studies in operando. These studies look at the gap between the performance of current technology and what is needed for the future, for example how to improve on the lithium-ion battery and to go beyond its capabilities.Suitable for students and practitioners in the chemical, electrochemical, and environmental sciences, Nanomaterials for Energy Conversion and Storage provides the information needed to find scalable, economically viable and safe solutions for sustainable energy.




Nanomaterials Design for Sensing Applications


Book Description

Nanomaterials Design for Sensing Applications examines chemosensors, beginning with molecules that are able to respond to certain stimuli and then showing their assembly and incorporation into sensing materials. The mechanisms of their action for the detection of ions, specific molecules and biostructures, are also covered. A major theme is the affordability of sensors, with particular attention paid to inexpensive and reliable colorimetric sensors that can be read by the naked eye. The book also delves into the development of sensors that utilize existing RFID infrastructure and introduces a novel strategy for the development of self-healing sensing platforms. This book will help readers develop a better understanding of the types of materials used for sensing at the nano level, while also providing an insightful overview on recent advances in this important area. - Demonstrates how the use of nanomaterials allows for the creation of cheaper, more reliable sensors - Shows how metal oxide nanostructures are used as both sensors and supports for embedded organic and organometallic sensing molecules - Explores a novel sensing methodology resulting from the integration of nanostructured sensors into radio frequency identification tags




Application of Nanomaterials in Chemical Sensors and Biosensors


Book Description

Recent advances in nanotechnology has led the nanomaterials into the realm of sensing applications. This descriptive book utilizes a multi-disciplinary approach to provide extensive information about sensors and elucidates the impact of nanotechnology on development of chemical and biosensors for diversified applications. The main focus of this book is not only the inclusion of various research works, which have already been reported in literature, but also to make a potential conclusion about the mechanism behind this. This book will serve as an invaluable tool for both frontline researchers and academicians to work towards the future development of nanotechnology in sensing devices.




Expanding the Vision of Sensor Materials


Book Description

Advances in materials science and engineering have paved the way for the development of new and more capable sensors. Drawing upon case studies from manufacturing and structural monitoring and involving chemical and long wave-length infrared sensors, this book suggests an approach that frames the relevant technical issues in such a way as to expedite the consideration of new and novel sensor materials. It enables a multidisciplinary approach for identifying opportunities and making realistic assessments of technical risk and could be used to guide relevant research and development in sensor technologies.




Nanomaterials-Based Electrochemical Sensors: Properties, Applications, and Recent Advances


Book Description

As opposed to conventional electrochemical sensors, nanomaterials-based sensors are active and effective in their action with even a minute concentration of analyte. A number of research studies are bringing about an evolution in their development and advancement because of their unique and effective properties. Nanoscale electrochemical sensors have applications in almost every field of life including the detection of neurochemicals, heavy metals, energy components, body fluids, biological matrices, cancer relevant biomolecules, aromatic hydrocarbons, also in playing their role in food science because of their capability in providing quality control and safety. There is a need to develop these nanomaterials-based electrochemical sensors to be more widely available for accurate sensing of minute concentrations especially in the case of heavy metal detection, biofluids, and other biomaterials. This book outlines the major preparation, fabrication and manufacture of nanomaterials-based electrochemical sensors, as well as detailing their principle medical, environmental and industrial applications in an effort to meet this need.This book is a valuable reference source for materials scientists, engineers, electrochemists, environmental engineers and biomedical engineers who want to understand how nanomaterials-based electrochemical sensors are made, and how they are used. - Explains the techniques used for the fabrication and manufacture of nanomaterials-based electrochemical sensors - Discusses the major applications of nanomaterials-based electrochemical sensors in biomedicine and environmental science - Assesses the potential toxicity and other challenges associated with using nanomaterials-based electrochemical sensors




Surface Modified Nanomaterials for Applications in Catalysis


Book Description

Surface Modified Nanomaterials for Applications in Catalysis: Fundamentals, Methods and Applications provides an overview of the different state-of-the-art surface modification methods of nanomaterials and their commercial applications. The main objective of this book is to comprehensively cover the modification of nanomaterial and their fabrication, including different techniques and discussions of present and emerging commercial applications. The book addresses fundamental chemistry concepts as applied to the modification of nanomaterials for applications in energy, catalysis, water remediation, sensors, and more. Characterization and fabrication methodologies are reviewed, along with the challenges of up-scaling of processes for commercial applications. This book is suitable for academics and practitioners working in materials science, engineering, nanotechnology, green chemistry and chemical engineering. - Provides an overview of the basic principles of surface modification of nanomaterials - Reviews useful fabrication and characterization methodologies for key applications - Addresses surface modified nanomaterials for applications in catalysis, energy, sensor, environment, and more




Nanomaterials for Biosensors


Book Description

Nanomaterials for Biosensors: Fundamentals and Applications provides a detailed summary of the main nanomaterials used in biosensing and their application. It covers recent developments in nanomaterials for the fabrication of biosensor devices for healthcare diagnostics, food freshness and bioprocessing. The various processes used for synthesis and characterization of nanostructured materials are examined, along with the design and fabrication of bioelectronic devices using nanostructured materials as building blocks. Users will find the fundamentals of the main nanomaterials used in biosensing, helping them visualize a systematic and coherent picture of how nanomaterials are used in biosensors. The book also addresses the role of bio-conjugation of nanomaterials in the construction of nano-biointerfaces for application in biosensors. Such applications, including metal nanoparticles, metal oxide nanoparticles, nanocomposites, carbon nanotubes, conducting polymers and plasmonic nanostructures in biosensing are discussed relative to each nanomaterial concerned. Finally, recent advancements in protein functionalized nanomaterials for cancer diagnostics and bio-imaging are also included. - Provides a detailed study on how nanomaterials are used to enhance sensing capabilities in biosensors - Explains the properties, characterization methods and preparation techniques of the nanomaterials used in biosensing - Arranged in a material-by-material way, making it clear how each nanomaterial should be used




Handbook of Nanomaterials for Sensing Applications


Book Description

Handbook of Nanomaterials for Intelligent Sensing Applications provides insights into the production of nanosensors and their applications. The book takes an interdisciplinary approach, showing how nano-enhanced sensing technology is being used in a variety of industry sectors and addressing related challenges surrounding the production, fabrication and application of nanomaterials-based sensors at both experimental and theoretical levels. This book is an important reference source for materials scientists and engineers who want to learn more about how nanomaterials are being used to enhance sensing products and devices for a variety of industry sectors. The pof miniaturized device components and engineering systems of micro- and nanoscale is beyond the capability of conventional machine tools. The production of intelligent sensors at nanometer scale presents great challenges to engineers in design and manufacture. The manufacturing of nano-scaled devices and components involves isolation, transportation and re-assembly of atoms and molecules. This nanomachining technology involves not only physical-chemical processes as in the case of microfabrication, but it also involves application and integration of the principles of molecular biology. - Explains how the functionalization of nanomaterials is being used to create more effective sensors - Explores the major challenges of using nanoscale sensors for industrial applications on a broad scale - Assesses which classes of nanomaterial should best be used for sensing applications




Bioinspired Nanomaterials


Book Description

Biological synthesis employing microorganisms, fungi or plants is an alternative method to produce nanoparticles in low-cost and eco-friendly ways. The book covers the synthesis of metal nanoparticles, metal oxide nanostructures and nanocomposite materials, as well as the stability and characterization of bioinspired nanomaterials. Applications include optical and electrochemical sensors, packaging, SERS and drug delivery processes. Keywords: Bioinspired Nanomaterials, Metal Nanoparticles, Metal Oxide Nanostructures, Nanocomposite Materials, Microbicidal Activity, Drug Delivery, Packaging Applications, SERS Applications, Fluorescent Biosensing, Quantum Dots. Bio-Imaging, Electrochemical Sensors.