Fundamentals of Nanoparticles


Book Description

Fundamentals of Nanoparticles: Classifications, Synthesis Methods, Properties and Characterization explores the nanoparticles and architecture of nanostructured materials being used today in a comprehensive, detailed manner. This book focuses primarily on the characterization, properties and synthesis of nanoscale materials, and is divided into three major parts. This is a valuable reference for materials scientists, and chemical and mechanical engineers working in R&D and academia, who want to learn more about how nanoparticles and nanomaterials are characterized and engineered. Part one covers nanoparticles formation, self-assembly in the architecture nanostructures, types and classifications of nanoparticles, and signature physical and chemical properties, toxicity and regulations. Part two presents different ways to form nanometer particles, including bottom-up and top-down approaches, the classical and non-classical theories of nanoparticles formation and self-assembly, surface functionalization and other surface treatments to allow practical use. Part three covers characterization of nanoparticles and nanostructured materials, including the determination of size and shape, in addition to atomic and electronic structures and other important properties. - Includes new physical and chemical techniques for the synthesis of nanoparticles and architecture nanostructures - Features an in-depth treatment of nanoparticles and nanostructures, including their characterization and chemical and physical properties - Explores the unusual properties of materials that are developed by modifying their shape and composition and by manipulating the arrangement of atoms and molecules - Explains important techniques for the synthesis, fabrication and the characterization of complex nano-architectures




Nanoparticles for Biomedical Applications


Book Description

Nanoparticles for Biomedical Applications: Fundamental Concepts, Biological Interactions and Clinical Applications brings into one place information on the design and biomedical applications of different classes of nanoparticles. While aspects are dealt with in individual journal articles, there is not one source that covers this area comprehensively. This book fills this gap in the literature. - Outlines an in-depth review of biomedical applications of a variety of nanoparticle classes - Discusses the major techniques for designing nanoparticles for use in biomedicine - Explores safety and regulatory aspects for the use of nanoparticles in biomedicine




Nanoparticle Technology Handbook


Book Description

Nanoparticle technology, which handles the preparation, processing, application and characterisation of nanoparticles, is a new and revolutionary technology. It becomes the core of nanotechnology as an extension of the conventional Fine Particle / Powder Technology. Nanoparticle technology plays an important role in the implementation of nanotechnology in many engineering and industrial fields including electronic devices, advanced ceramics, new batteries, engineered catalysts, functional paint and ink, Drug Delivery System, biotechnology, etc.; and makes use of the unique properties of the nanoparticles which are completely different from those of the bulk materials.This new handbook is the first to explain complete aspects of nanoparticles with many application examples showing their advantages and advanced development. There are handbooks which briefly mention the nanosized particles or their related applications, but no handbook describing the complete aspects of nanoparticles has been published so far.The handbook elucidates of the basic properties of nanoparticles and various nanostructural materials with their characterisation methods in the first part. It also introduces more than 40 examples of practical and potential uses of nanoparticles in the later part dealing with applications. It is intended to give readers a clear picture of nanoparticles as well as new ideas or hints on their applications to create new materials or to improve the performance of the advanced functional materials developed with the nanoparticles.* Introduces all aspects of nanoparticle technology, from the fundamentals to applications.* Includes basic information on the preparation through to the characterization of nanoparticles from various viewpoints * Includes information on nanostructures, which play an important role in practical applications.




Characterization of Nanoparticles


Book Description

Characterization of Nanoparticles: Measurement Processes for Nanoparticles surveys this fast growing field, including established methods for the physical and chemical characterization of nanoparticles. The book focuses on sample preparation issues (including potential pitfalls), with measurement procedures described in detail. In addition, the book explores data reduction, including the quantitative evaluation of the final result and its uncertainty of measurement. The results of published inter-laboratory comparisons are referred to, along with the availability of reference materials necessary for instrument calibration and method validation. The application of these methods are illustrated with practical examples on what is routine and what remains a challenge. In addition, this book summarizes promising methods still under development and analyzes the need for complementary methods to enhance the quality of nanoparticle characterization with solutions already in operation.




Nanoparticles in Analytical and Medical Devices


Book Description

Nanoparticles in Analytical and Medical Devices presents the latest information on the use of nanoparticles for a diverse range of analytical and medical applications. Covers basic principles, proper use of nanoparticles in analytical and medical applications, and recent progress in the field. This comprehensive reference helps readers grasp the full potential of nanoparticles in their analytical research or medical practice. Chapters on cutting-edge topics bring readers up to date on the latest research and usage of nanoparticles, and a chapter on commercially available devices that utilize nanoparticles guides readers in overcoming issues with marketing biodevices. - Synthesizes nanoparticle conjugation and other critical methods - Covers nanoparticles in analytical methods and real analytical devices currently used in the medical field - Provides useful new information not covered in the current literature in chapters on surface chemical functionalization for bio-immobilization and nanoparticle production from natural sources




Magnetic Nanoparticles


Book Description

The present book covers all research areas related to magnetic nanoparticles, magnetic nanorods, and other magnetic nanospecies, their preparation, characterization, and various applications, specifically emphasizing biomedical applications. The chapters written by the leading experts cover different subareas of the science and technology related to various magnetic nanospecies—providing broad coverage of this multifaceted area and its applications. The different topics addressed in this book will be of great interest to the interdisciplinary community active in the area of nanoscience and nanotechnology. It is hoped that this collection and its various chapters will be important and beneficial for researchers and students working in various areas related to bionanotechnology, materials science, biosensor applications, medicine, and many others. Furthermore, this book is aimed at attracting young scientists and introducing them to this field, in addition to providing newcomers with an enormous collection of literature references.




Green Synthesis, Characterization and Applications of Nanoparticles


Book Description

Green Synthesis, Characterization and Applications of Nanoparticles shows how eco-friendly nanoparticles are engineered and used. In particular, metal nanoparticles, metal oxide nanoparticles and other categories of nanoparticles are discussed. The book outlines a range of methodologies and explores the appropriate use of each. Characterization methods include spectroscopic, microscopic and diffraction methods, but magnetic resonance methods are also included as they can be used to understand the mechanism of nanoparticle synthesis using organisms. Applications covered include targeted drug delivery, water purification and hydrogen generation. This is an important research resource for those wishing to learn more about how eco-efficient nanoparticles can best be used. Theoretical details and mathematical derivations are kept to a necessary minimum to suit the need of interdisciplinary audiences and those who may be relatively new to the field. - Explores recent trends in growth, characterization, properties and applications of nanoparticles - Gives readers an understanding on how they are applied through the use of case studies and examples - Assesses the advantages and disadvantages of a variety of synthesis and characterization techniques for green nanoparticles in different situations




Engineered Nanoparticles


Book Description

Engineered Nanoparticles: Structure, Properties and Mechanisms of Toxicity is an indispensable introduction to engineered nanomaterials (ENM) and their potential adverse effects on human health and the environment. Although research in the area of pharmacology and toxicology of ENM is rapidly advancing, a possible correlation between their physicochemical properties and biomedical properties or toxicity is not yet fully understood. This understanding is essential to develop strategies for the safe applications and handling of ENM. The book comprehensively defines the current understanding of ENM toxicity, first describing these materials and their physicochemical properties, and then discussing the toxicological theory and methodology before finally demonstrating the potential impact of ENM on the environment and human health. It represents an essential reference for students and investigators in toxicology, pharmacology, chemistry, material sciences, medicine, and those in related disciplines who require an introduction to ENM and their potential toxicological effects. - Provides state-of-the-art physicochemical descriptions and methodologies for the characterization of engineered nanomaterials (ENM) - Describes the potential toxicological effects of ENM and the nanotoxicological mechanisms of action - Presents how to apply theory to practice in a public health and risk assessment setting




Biomedical Applications of Nanoparticles


Book Description

Biomedical Applications of Nanoparticles describes the most interesting and investigated biomedical applications of nanoparticles, emphasizing their therapeutic impact. Progress made in the therapy of severe diseases, such as cancer and difficult infections is strictly correlated to the scientific progress and technological development in the field of materials science. Nanoparticles have numerous therapeutic applications, starting with the design of new drugs, delivery systems, therapeutic materials, and their contribution to the development of preventive strategies. The book highlights the impact of nanoparticles on the therapy of infections, antimicrobial effect and also anti-cancer strategies. Successful examples are given throughout the book, along with analysis in order to improve future outcomes of novel therapies. - Highlights the term nanotherapeutics and presents several classifications of nanotherapeutics from different points-of-view - Presents the recent progress related to nanotherapeutics in the oral cavity - Provides the recent progress in the field of biomedical nanoparticles




The ELSI Handbook of Nanotechnology


Book Description

This Handbook focuses on the recent advancements in Safety, Risk, Ethical Society and Legal Implications (ESLI) as well as its commercialization of nanotechnology, such as manufacturing. Nano is moving out of its relaxation phase of scientific route, and as new products go to market, organizations all over the world, as well as the general public, are discussing the environmental and health issues associated with nanotechnology. Nongovernmental science organizations have long since reacted; however, now the social sciences have begun to study the cultural portent of nanotechnology. Societal concerns and their newly constructed concepts, show nanoscience interconnected with the economy, ecology, health, and governance. This handbook addresses these new challenges and is divided into 7 sections: Nanomaterials and the Environment; Life Cycle Environmental Implications of Nanomanufacturing; Bioavailability and Toxicity of Manufactured Nanoparticles in Terrestrial Environments; Occupational Health Hazards of Nanoparticles; Ethical Issues in Nanotechnology; Commercialization of Nanotechnology; Legalization of Nanotechnology.