Nanoparticulate Vaccine Delivery Systems


Book Description

Recent years have seen the development of novel technologies that use nanoparticles and microparticles to deliver vaccines by the oral and microneedle-based transdermal route of administration. These new technologies enable the formulation of vaccine particles containing vaccine antigens, without loss of their biological activity during the formula




Vaccine Adjuvants and Delivery Systems


Book Description

The authoritative reference on recent developments in vaccinology New technologies, including recombinant protein and DNA, have sparked phenomenal progress in vaccine development and delivery systems. This unique resource brings scientists up to date on recent advances and provides the information they need to select candidate adjuvants. With chapters written by leading experts in their fields, Vaccine Adjuvants and Delivery Systems: * Provides a comprehensive overview of the rapidly evolving field and developing formulation methods * Covers cutting-edge technologies and gives the current status of adjuvants in clinical trials and those still in the pre-clinical stage * Includes detailed information on specific vaccine adjuvants, including MF59, TLR4 agonists, new iscoms, cytokines, polyphosphazenes, and more * Provides a historical perspective on the development of vaccine adjuvants and discusses the mechanisms of adjuvant actions * Covers some novel adjuvants and delivery systems and the safety evaluation of adjuvants A great reference for researchers, scientists, and students in vaccinology, biotechnology, immunology, and molecular biology, this resource is also valuable for researchers and scientists in veterinary medicine who work to prevent diseases in animals.




Polymers in Nanomedicine


Book Description

Functional Polymer Conjugates for Medicinal Nucleic Acid Delivery, by Ernst Wagner Biodegradable Nanoparticles as Vaccine Adjuvants and Delivery Systems: Regulation of Immune Responses by Nanoparticle-Based Vaccine, by Takami Akagi, Masanori Baba and Mitsuru Akashi Biodegradable Polymeric Assemblies for Biomedical Materials, by Yuichi Ohya, Akihiro Takahashi and Koji Nagahama PEGylation Technology in Nanomedicine, by Yutaka Ikeda and Yukio Nagasaki Cytocompatible Hydrogel Composed of Phospholipid Polymers for Regulation of Cell Functions, by Kazuhiko Ishihara, Yan Xu and Tomohiro Konno Design of Biointerfaces for Regenerative Medicine, by Yusuke Arima, Koichi Kato, Yuji Teramura and Hiroo Iwata Advances in Tissue Engineering Approaches to Treatment of Intervertebral Disc Degeneration: Cells and Polymeric Scaffolds for Nucleus Pulposus Regeneration, by Jeremy J. Mercuri and Dan T. Simionescu Functionalized Biocompatible Nanoparticles for Site-Specific Imaging and Therapeutics, by Ranu K. Dutta, Prashant K. Sharma, Hisatoshi Kobayashi and Avinash C. Pandey




Micro- and Nanotechnology in Vaccine Development


Book Description

This book provides a comprehensive overview of how use of micro- and nanotechnology (MNT) has allowed major new advance in vaccine development research, and the challenges that immunologists face in making further progress. MNT allows the creation of particles that exploit the inherent ability of the human immune system to recognize small particles such as viruses and toxins. In combination with minimal protective epitope design, this permits the creation of immunogenic particles that stimulate a response against the targeted pathogen. The finely tuned response of the human immune system to small particles makes it unsurprising that many of the lead adjuvants and vaccine delivery systems currently under investigation are based on nanoparticles. Provides a comprehensive and unparalleled overview of the role of micro- and nanotechnology in vaccine development Allows researchers to quickly familiarize themselves with the broad spectrum of vaccines and how micro- and nanotechnologies are applied to their development Includes a combination of overview chapters setting out general principles, and focused content dealing with specific vaccines, making it useful to readers from a variety of disciplines




Nanoparticulate Drug Delivery Systems


Book Description

With the advent of analytical techniques and capabilities to measure particle sizes in nanometer ranges, there has been tremendous interest in the use of nanoparticles for more efficient methods of drug delivery. Nanoparticulate Drug Delivery Systems addresses the scientific methodologies, formulation, processing, applications, recent trends, and e




Nanoparticulate Drug Delivery Systems


Book Description

Frank discussions of opportunities and challenges point the way to new, more effective drug delivery systems Interest in nanomedicine has grown tremendously, fueled by the expectation that continued research will lead to the safe, efficient, and cost-effective delivery of drugs or imaging agents to human tissues and organs. The field, however, has faced several challenges attempting to translate novel ideas into clinical benefits. With contributions from an international team of leading nanomedicine researchers, this book provides a practical assessment of the possibilities and the challenges of modern nanomedicine that will enable the development of clinically effective nanoparticulate drug delivery products and systems. Nanoparticulate Drug Delivery Systems focuses on the rationales and preclinical evaluation of new nanoparticulate drug carriers that have yet to be thoroughly reviewed in the literature. The first chapter sets the stage with a general overview of targeted nanomedicine. The book then explores new and promising nanoparticulate drug delivery systems, including: Lipid nanoparticles for the delivery of nucleic acids Multifunctional dendritic nanocarriers Polymer drug nanoconjugates Next, the book presents new opportunities and challenges for nanoparticulate drug delivery systems, including: Clearance of nanoparticles during circulation Drug delivery strategies for combatting multiple drug resistance Toxicological assessment of nanomedicine Chapters offer state-of-the-technology reviews with extensive references to facilitate further investigation. Moreover, each chapter concludes with an expert assessment of remaining challenges, pointing the way to solutions and new avenues of research. With its frank discussions of opportunities and challenges, Nanoparticulate Drug Delivery Systems sets a solid foundation for new research leading to the discovery and development of better nanomedicines.







Novel Immune Potentiators and Delivery Technologies for Next Generation Vaccines


Book Description

Development of new-generation vaccines is now more challenging than ever, as identifying, purifying and evaluating vaccine antigens is a complex undertaking. Most importantly, once the relevant antigens have been identified, key focus then shifts to the development of suitable delivery systems and formulations to achieve maximum in vivo potency with minimum potential side effects. These novel formulations—many of which will be nanoparticulates—can deliver the antigens to the desired site, to the relevant antigen presenting cells, and prevent systemic exposure of the immune potentiators. The proposed book will outline all the critical steps that need to be considered for successful development of various types of nanoparticulate delivery systems for vaccine antigens. These contributions from leading experts in the area of vaccine formulation and delivery systems will tie in what is the most current status, including clinical evaluations with these novel vaccine technologies.​




Handbook of Immunological Properties of Engineered Nanomaterials


Book Description

The Handbook of Immunological Properties of Engineered Nanomaterials provides a comprehensive overview of the current literature, methodologies, and translational and regulatory considerations in the field of nanoimmunotoxicology. The main subject is the immunological properties of engineered nanomaterials. Focus areas include interactions between engineered nanomaterials and red blood cells, platelets, endothelial cells, professional phagocytes, T cells, B cells, dendritic cells, complement and coagulation systems, and plasma proteins, with discussions on nanoparticle sterility and sterilization. Each chapter presents a broad literature review of the given focus area, describes protocols and resources available to support research in the individual focus areas, highlights challenges, and outlines unanswered questions and future directions. In addition, the Handbook includes an overview of and serves a guide to the physicochemical characterization of engineered nanomaterials essential to conducting meaningful immunological studies of nanoparticles. Regulations related to immunotoxicity testing of materials prior to their translation into the clinic are also reviewed.The Handbook is written by top experts in the field of nanomedicine, nanotechnology, and translational bionanotechnology, representing academia, government, industry, and consulting organizations, and regulatory agencies. The Handbook is designed to serve as a textbook for students, a practical guide for research laboratories, and an informational resource for scientific consultants, reviewers, and policy makers. It is written such that both experts and beginners will find the information highly useful and applicable.