Nanosheets by Design


Book Description










Concepts and Design of Materials Nanoarchitectonics


Book Description

The concept of nanoarchitechtonics was introduced to describe the correct manipulation of nanoscale materials in the creation of nano-devices and applications. Nanoarchitectonics has begun to spread into many fields including nanostructured materials synthesis, supramolecular assembly, nanoscale structural fabrications, materials hybridizations, materials and structures for energy and environmental sciences, device and physical application, and bio- and medical applications. Following on from the 2012 title Manipulation of Nanoscale Materials, Concepts and Design of Materials Nanoarchitectonics covers the introductory features underlying the field, presenting a unifying overview of the theoretical aspects and emerging applications that are changing the capability to understand and design advanced functional materials. Edited by pioneers of the field, this book will appeal to researchers working in nanoscience, materials science, supramolecular chemistry, physical chemistry and organic chemistry, as well as graduate students in these areas.




Design, Fabrication, and Characterization of Multifunctional Nanomaterials


Book Description

Design, Fabrication, and Characterization of Multifunctional Nanomaterials covers major techniques for the design, synthesis, and development of multifunctional nanomaterials. The chapters highlight the main characterization techniques, including X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, energy dispersive X-ray spectroscopy, and scanning probe microscopy.The book explores major synthesis methods and functional studies, including: Brillouin spectroscopy; Temperature-dependent Raman spectroscopic studies; Magnetic, ferroelectric, and magneto-electric coupling analysis; Organ-on-a-chip methods for testing nanomaterials; Magnetron sputtering techniques; Pulsed laser deposition techniques; Positron annihilation spectroscopy to prove defects in nanomaterials; Electroanalytic techniques. This is an important reference source for materials science students, scientists, and engineers who are looking to increase their understanding of design and fabrication techniques for a range of multifunctional nanomaterials. Explains the major design and fabrication techniques and processes for a range of multifunctional nanomaterials; Demonstrates the design and development of magnetic, ferroelectric, multiferroic, and carbon nanomaterials for electronic applications, energy generation, and storage; Green synthesis techniques and the development of nanofibers and thin films are also emphasized.




Inorganic Nanosheets and Nanosheet-Based Materials


Book Description

This book focuses on inorganic nanosheets, including various oxides, chalcogenides, and graphenes, that provide two-dimensional (2D) media to develop materials chemistry in broad fields such as electronics, photonics, environmental science, and biology. The application area of nanosheets and nanosheet-based materials covers the analytical, photochemical, optical, biological, energetic, and environmental research fields. All of these applications come from the low dimensionality of the nanosheets, which anisotropically regulate structures of solids, microspaces, and fluids. Understanding nanosheets from chemical, structural, and application aspects in relation to their "fully nanoscopic" characters will help materials scientists to develop novel advanced materials. This is the first book that accurately and concisely summarizes this field including exfoliation and intercalation chemistries of layered crystals. The book provides perspective on the materials chemistry of inorganic nanosheets. The first section describes fundamental aspects of nanosheets common to diverse applications: how unique structures and properties are obtained from nanosheets based on low dimensionality. The second section presents state-of-the-art descriptions of how the 2D nature of nanosheets is utilized in each application of the materials that are developed.




Molecular Switches


Book Description

Täglich benutzen wir Schalter, um strombetriebene Geräte an- und abzuschalten und kein Compuer würde ohne sie funktionieren. Nach den gleichen Prinzipien funktionieren auch molekulare Schalter, die unter dem Einfluß ihrer Umwelt zwischen zwei definierten Zuständen wechseln können. Im Gegensatz zu den gewöhnlichen Schaltern sind molekulare Schalter aber außerordentlich klein und ihre Anwendung in der Nanotechnologie, Biomedizin und im Computerchipdesign öffnet neue Horizonte. Im vorliegenden Zweibänder berichten Herausgeber und Autoren über molekulare Schalter aus Katenanen und Rotaxanen, Fulgiden, Flüssigkristallen und Polypeptiden. Die Bandbreite der behandelten Themen reicht von chiroptischen Schaltern über multifunktionale Systeme bis hin zu molekularen logischen Schaltungen. Chemiker und Materialwissenschaftler in Industrie und Hochschule, die sich für einen der innovativsten Bereiche ihrer Wissenschaft interessieren, werden dieses Buch mit Gewinn lesen!




Mechanical and Materials Engineering of Modern Structure and Component Design


Book Description

This book presents the latest findings on mechanical and materials engineering as applied to the design of modern engineering materials and components. The contributions cover the classical fields of mechanical, civil and materials engineering, as well as bioengineering and advanced materials processing and optimization. The materials and structures discussed can be categorized into modern steels, aluminium and titanium alloys, polymers/composite materials, biological and natural materials, material hybrids and modern nano-based materials. Analytical modelling, numerical simulation, state-of-the-art design tools and advanced experimental techniques are applied to characterize the materials’ performance and to design and optimize structures in different fields of engineering applications.




Concepts and Design of Materials Nanoarchitectonics


Book Description

This book covers introductory features underlying the field of nanoarchitectonices, presenting a unifying overview of the theoretical aspects and emerging applications that are changing the capability to understand and design advanced functional materials.




Nano-Architectured and Nanostructured Materials


Book Description

Multiwall carbon nanotubes produced by underwater eltric arc; Synthesis of polyaniline nanotubes in the channels of anodic alumina menbrane; Electrical properties of single walled carbon nanotube fiber under electron irradiation; Localization of charge carriers and magneto transport in nanocomposites; Fabrication, control and properties of nanocrystaline copper; Synthesis and processing of silver doped copper nanopowders; Nanoporus gold as a mettalic actor material; Palladium nanoparticles generation within microcellular polymeric foam; Empirical modeling of the nanocrystalization process during devitriffication of an Al-based metallic glass; Numerical modelling of frequency and field dependent relaxation time in soft magnetic amorphous ribbons; Hierarchical nano-structured design of metal oxide catalysts; Formation of nanostructural oxide fibers; Silicon carbonitride nanopowders synthesized by laser pyrolisis for plastic nanocomposites; Synthesis of ormosil particles by non-hydrolytic sol-gel chemistry; Grain boundary microanalysis in A1203 SiC nanocomposites; A neutron powder diffraction study of FeCo-SiO2 nanocomposites; Acidity characterization of nanocrystalline H-ZSM-5 Zeolites by 31P MAS NMR of adsorbed phosphine oxide probes; Fabrication of multilayer ultrathin films through layer by layer assembly of delaminated MnO2 nanosheets and Polyectrolites; Generation of nanostructured materials from thin films of block copolymer.