Advanced Nanostructured Materials for Environmental Remediation


Book Description

This book provides a wide-range exploration on the ongoing research and developmental events in environmental nanotechnology. Emerging nanomaterials and its technology have been known to offer unique advantages and are continually showing promising potential attracting continuous global attention. This work thus discusses experimental studies of various nanomaterials along with their design and applications and with specific attention to chemical reactions and their challenges for catalytic systems. It will make a noteworthy appeal to scientists and researchers working in the field of nanotechnology for environmental sciences.




Carbon Nanomaterials for Agri-food and Environmental Applications


Book Description

Carbon Nanomaterials for Agri-food and Environmental Applications discusses the characterization, processing and applications of carbon-based nanostructured materials in the agricultural and environmental sectors. Sections discuss the synthesis and characterization of carbon nanotubes, the technological developments in environmental applications of carbon-based nanomaterials, and agri-food applications. The book also covers the toxic effects of engineered carbon nanoparticles on the environment, and in plants and animals. Finally, quality control and risk management are addressed to assess health and environmental risks. This is an applicable book for graduate students, researchers and those in industrial sectors of science and technology who want to learn more about carbon nanomaterials.




Emerging Nanostructured Materials for Energy and Environmental Science


Book Description

This book provides the fundamental aspects of the diverse ranges of nanostructured materials (0D, 1D, 2D and 3D) for energy and environmental applications in a comprehensive manner written by specialists who are at the forefront of research in the field of energy and environmental science. Experimental studies of nanomaterials for aforementioned applications are discussed along with their design, fabrication and their applications, with a specific focus on catalysis, energy storage and conversion systems. This work also emphasizes the challenges of past developments and directions for further research. It also looks at details pertaining to the current ground – breaking of nanotechnology and future perspectives with a multidisciplinary approach to energy and environmental science and informs readers about an efficient utilization of nanomaterials to deliver solutions for the public.




Functionalized Nanomaterials Based Devices for Environmental Applications


Book Description

Environmental devices help in monitoring the collection of one or more measurements that are used to access the status of an environment. Today, environmental monitoring and analytical methods are among the most rapidly developing branches of analysis. The functionalization of nanomaterials in the field of environmental science has increasing importance with regards to the fabrication of devices. Functionalized nanomaterials reformulate new materials and advanced characteristics for improved application in comparison to old fashion materials and open an opportunity for the development of devices for introducing new technology and techniques for monitoring environmental challenges. The monitoring of these environmental challenges in advances have direct impact on health and sustainability. Functionalized nanomaterials have different mechanical, absorption, optical or electrical properties than original nanomaterials. In fact, major utilization of nanomaterials occurs in their functionalized forms, which are very different from the parent material. This handbook provides an overview of the different state-of-the-art materials, devices and environmental applications of functionalized nanomaterials. In addition, the information offers a platform for ongoing research in the field of environmental science and device fabrication. The main objective of this book is to cover the major areas focusing on the functionalization of nanomaterials, device fabrication along with different techniques and environmental applications of functionalized nanomaterials-based devices. This is an important reference source for materials scientists, engineers and environmental scientsts who are looking to increase their understanding of how functionalized nanomaterial-based devices are being used for environmental monitoring applications. - Helps the reader to understand the basic principles of functionalization of nanomaterials - Highlights fabrication and characterization methods for functionalized nanomaterials-based environmental monitoring devices - Assesses the major challenges of creating devices using functionalized nanomaterials on a mass scale




Nanostructured Materials for Energy Related Applications


Book Description

This book describes the role and fundamental aspects of the diverse ranges of nanostructured materials for energy applications in a comprehensive manner. Advanced nanomaterial is an important and interdisciplinary field which includes science and technology. This work thus gives the reader an in depth analysis focussed on particular nanomaterials and systems applicable for technologies such as clean fuel, hydrogen generation, absorption and storage, supercapacitors, battery applications and more. Furthermore, it not only aims to exploit certain nanomaterials for technology transfer, but also exploits a wide knowledge on avenues such as biomass-derived nanomaterials, carbon dioxide conversions into renewable fuel chemicals using nanomaterials. These are the areas with lacunae that demand more research and application.




Nanotechnology and Photocatalysis for Environmental Applications


Book Description

Nanotechnology and Photocatalysis for Environmental Applications focuses on nanostructured control, synthesis methods, activity enhancement strategies, environmental applications, and perspectives of semiconductor-based nanostructures. The book offers future guidelines for designing new semiconductor-based photocatalysts, with low cost and high efficiency, for a range of products aimed at environmental protection. The book covers the fundamentals of nanotechnology, the synthesis of nanotechnology, and the use of metal oxide, metal sulfide, and carbon-based nanomaterials in photocatalysis. The book also discusses the major challenges of using photocatalytic nanomaterials on a broad scale. The book then explores how photocatalytic nanomaterials and nanocomposites are being used for sustainable development applications, including environmental protection, pharmaceuticals, and air purification. The final chapter considers the recent advances in the field and outlines future perspectives on the technology. This is an important reference for materials scientists, chemical engineers, energy scientists, and anyone looking to understand more about the photocatalytic potential of nanomaterials, and their possible environmental applications. - Explains why the properties of semiconductor-based nanomaterials make them particularly good for environmental applications - Explores how photocatalytic nanomaterials and nanocomposites are being used for sustainable development applications, including environmental protection, pharmaceuticals, and air purification - Discusses the major challenges of using photocatalytic nanomaterials on a broad scale




Zinc-Based Nanostructures for Environmental and Agricultural Applications


Book Description

Zinc-Based Nanostructures for Environmental and Agricultural Applications shows how zinc nanostructures are being used in agriculture, food and the environment. The book has been divided into two parts: Part I deals with the synthesis and characterization of zinc-based nanostructures such as biogenic, plant, microbial, and actinobacteria mediated synthesis of zinc nanoparticles, Part II is focused on agri-food applications such as antibacterial, antifungal, antimicrobial, plant disease management, controlling post-harvest diseases, pesticide sensing and degradations, plant promotions, ZnO nanostructure for food packaging application, safe animal food and feed supplement, elimination of mycotoxins, and veterinary applications. Part III reviews technological developments in environmental applications such as risks and benefits for aquatic organisms and the marine environment, antiseptic activity and toxicity mechanisms, wastewater treatment, and zinc oxide-based nanomaterials for photocatalytic degradation of environmental and agricultural pollutants. The book discusses various aspects, including the application of zinc-based nanostructures to enhance plant health and growth, the effect on soil microbial activity, antimicrobial mechanism, phytotoxicity and accumulation in plants, the possible impact of zinc-based nanostructures in the agricultural sector as nanofertilizer, enhancing crop productivity, and other possible antimicrobial mechanisms of ZnO nanomaterials. - Explores the impact of a large variety of zinc-based nanostructures on agri-food and environment sectors - Outlines how the properties of zinc-based nanostructures mean they are particularly efficient in environmental and agricultural application areas - Assesses the major challenges of synthesizing and processing zinc-based nanostructured materials




Nanomaterials in Energy and Environmental Applications


Book Description

Nanoscience and nanotechnology are interdisciplinary fields that bring together physicists, chemists, materials scientists, and engineers to meet the potential future challenges that humankind will face, including the search for renewable energies for sustainable development and new technologies for carbon capture and environmental protection. Among the current subjects in nanoscience and nanotechnology, nanomaterials are developing fast and explosively and attracting a huge amount of attention. They continue to show promising potential and have found application in solar cells, fuel cells, secondary batteries, supercapacitors, air and water purification, and removal of domestic and outdoor air pollutants. To summarize the past developments and encourage future efforts, this book presents contributions from world-renowned specialists in the fields of nanomaterials, energy, and environmental science. It discusses the design and fabrication of nanostructured materials and their energy and environmental applications.




Nanostructured Materials


Book Description

This book discusses the early stages of the development of nanostructures, including synthesis techniques, growth mechanisms, the physics and chemistry of nanostructured materials, various innovative characterization techniques, the need for functionalization and different functionalization methods as well as the various properties of nanostructured materials. It focuses on the applications of nanostructured materials, such as mechanical applications, nanoelectronics and microelectronic devices, nano-optics, nanophotonics and nano-optoelectronics, as well as piezoelectric, agriculture, biomedical and, environmental remediation applications, and anti-microbial and antibacterial properties. Further, it includes a chapter on nanomaterial research developments, highlighting work on the life-cycle analysis of nanostructured materials and toxicity aspects.




Metal Semiconductor Core-shell Nanostructures for Energy and Environmental Applications


Book Description

Metal Semiconductor Core-Shell Nanostructures for Energy and Environmental Applications provides a concise, scholarly overview of current research into the characterization of metal semiconductor core-shell nanostructures; the book shows how their properties can be best used in energy and environmental applications, particularly for solar cell and catalysis application. Coverage is also given to the effect of metal nanoparticle for charge generation or charge separation. The book is a valuable resource for academic researchers working in the areas of nanotechnology, sustainable energy and chemical engineering, and is also of great use to engineers working in photovoltaic and pollution industries. - Includes a clear method for synthesis of core-shell nanomaterials - Explores how metal semiconductor core-shell nanostructures can be used to improve the efficiency of solar cells - Explains how the characteristics of metal semiconductor core-shell nanostructures make them particularly useful for sustainable energy and environmental applications