Atomically Precise Nanochemistry


Book Description

Explore recent progress and developments in atomically precise nanochemistry Chemists have long been motivated to create atomically precise nanoclusters, not only for addressing some fundamental issues that were not possible to tackle with imprecise nanoparticles, but also to provide new opportunities for applications such as catalysis, optics, and biomedicine. In Atomically Precise Nanochemistry, a team of distinguished researchers delivers a state-of-the-art reference for researchers and industry professionals working in the fields of nanoscience and cluster science, in disciplines ranging from chemistry to physics, biology, materials science, and engineering. A variety of different nanoclusters are covered, including metal nanoclusters, semiconductor nanoclusters, metal-oxo systems, large-sized organometallic nano-architectures, carbon clusters, and supramolecular architectures. The book contains not only experimental contributions, but also theoretical insights into the atomic and electronic structures, as well as the catalytic mechanisms. The authors explore synthesis, structure, geometry, bonding, and applications of each type of nanocluster. Perfect for researchers working in nanoscience, nanotechnology, and materials chemistry, Atomically Precise Nanochemistry will also benefit industry professionals in these sectors seeking a practical and up-to-date resource.




Nanomaterials for Sustainable Energy and Environmental Remediation


Book Description

Nanostructured materials, especially, 1D, 2D and 3D nanostructures, and their engineered architectures are being increasingly used due to their potential to achieve sustainable development in energy and environmental sectors, providing a solution to a range of global challenges. A huge amount of research has been devoted in the recent past on the fine-tuning of nano-architecutres to accomplish innovations in energy storage and conversions, i.e., batteries, supercapacitors, fuel cells, solar cells, and electrochromic devices, bifunctional catalysts for ORR and OER, gas to fuels, liquid to fuels, and photocatalysts, corrosion, electrochemical sensors, and pollution and contaminants removal. Nanomaterials for Sustainable Energy and Environmental Remediation describes the fundamental aspects of a diverse range of nanomaterials for the sustainable development in energy and environmental remediation in a comprehensive manner. Experimental studies of varies nanomaterials will be discussed along with their design and applications, with specific attention to various chemical reactions involving and their challenges for catalysis, energy storage and conversion systems, and removal of pollutants are addressed. This book will also emphasise the challenges with past developments and direction for further research, details pertaining to the current ground - breaking technology and future perspective with multidisciplinary approach on energy, nanobiotechnology and environmental science - Summarizes the latest advances in how nanotechnology is being used in energy and environmental science - Outlines the major challenges to using nanomaterials for creating new products and devices in the sustainable energy and environmental sectors - Helps materials scientists and engineers make selection and design decisions regarding which nanomaterial to use when creating new produts and evices for energy and environmental applications




Frontiers in Materials: Rising Stars


Book Description

The Frontiers in Materials Editorial Office team are delighted to present the inaugural “Frontiers in Materials: Rising Stars” article collection, showcasing the high-quality work of internationally recognized researchers in the early stages of their independent careers. All Rising Star researchers featured within this collection were individually nominated by the Journal’s Chief Editors in recognition of their potential to influence the future directions in their respective fields. The work presented here highlights the diversity of research performed across the entire breadth of the materials science and engineering field, and presents advances in theory, experiment and methodology with applications to compelling problems. This Editorial features the corresponding author(s) of each paper published within this important collection, ordered by section alphabetically, highlighting them as the great researchers of the future. The Frontiers in Materials Editorial Office team would like to thank each researcher who contributed their work to this collection. We would also like to personally thank our Chief Editors for their exemplary leadership of this article collection; their strong support and passion for this important, community-driven collection has ensured its success and global impact. Laurent Mathey, PhD Journal Development Manager




Electrochemical Water Electrolysis


Book Description

This book comprehensively describes the fundamentals of electrochemical water electrolysis as well as the latest materials and technological developments. It addresses a variety of topics such as electrochemical processes, materials, components, assembly and manufacturing, and degradation mechanisms, as well as challenges and strategies. It also includes an understanding of how materials and technologies for electrochemical water electrolysis have developed in recent years, and it describes the progress in improving performance and providing benefits to energy systems and applications. Features the most recent advances in electrochemical water electrolysis to produce hydrogen Discusses cutting-edge materials and technologies for electrochemical water electrolysis Includes both experimental and theoretical approaches that can be used to guide and promote materials as well as technological development for electrochemical water electrolysis Comprises work from international leading scientists active in electrochemical energy and environmental research and development Provides invaluable information that will benefit readers from both academia and industry With contributions from researchers at the top of their fields, the book includes in-depth discussions covering the engineering of components and applied devices, making this an essential read for scientists and engineers working in the development of electrochemical energy devices and related disciplines.




Electrochemical Water Splitting


Book Description

Aiming at the generation of hydrogen from water, electrochemical water splitting represents a promising clean technology for generating a renewable energy resource. The book reviews the fundamental aspects and describes recent research advances. Properties and characterization methods for various types of electrocatalysts are discussed, including noble metals, earth-abundant metals, metal-organic frameworks, carbon nanomaterials and polymers. Keywords: Electrochemical Water Splitting, Renewable Energy Resource, Electrocatalysts, Oxygen Evolution Reaction (OER), Noble Metal Catalysts, Earth-Abundant Metal Catalysts, MOF Catalysts, Carbon-based Nanocatalysts, Polymer Catalysts, Transition Metal-based Electrocatalysts, Fe-based Electrocatalysts, Co-based Electrocatalysts, Ni-based Electrocatalysts, Metal Free Catalysts, Transition-Metal Chalcogenides, Prussian Blue Analogues.




Reviews in Chemistry


Book Description




Hydrogen Technology


Book Description

Hydrogen Technology: Fundamentals and Applications relates theoretical concepts to practical case studies in the field of hydrogen technology with an emphasis on materials and their applications. To implement hydrogen conversion production processes, it is crucial to understand the structural, microstructural, textural, thermal, catalytic, and electrochemical properties of materials. Covering nanomaterials, heterogeneous catalysis, greenhouse gas conversion, reforming reactions for hydrogen production, valorization of hydrogen energy, biomass valorization, the hydrogen economy, and its technical feasibility, this book addresses how bio/hydrogen technology can be used to solve environmental problems, including how to produce, convert, and store energy through electro/catalytic reactions and chemical valorization. Providing an understanding of the different factors involved, such as the availability of raw material, location, viable process and production scale, and economic criteria, this book will especially be of interest to engineers, scientists, and students in the field of hydrogen technology. - Explains the phenomena that govern electrocatalytic/catalytic reactions - Covers the study of new materials design and industrial processes - Includes process improvements for obtaining hydrogen via chemical and biological processes




Oxide Surfaces


Book Description

The book is a multi-author survey (in 15 chapters) of the current state of knowledge and recent developments in our understanding of oxide surfaces. The author list includes most of the acknowledged world experts in this field. The material covered includes fundamental theory and experimental studies of the geometrical, vibrational and electronic structure of such surfaces, but with a special emphasis on the chemical properties and associated reactivity. The main focus is on metal oxides but coverage extends from 'simple' rocksalt materials such as MgO through to complex transition metal oxides with different valencies.




Powder Surface Area and Porosity


Book Description

The rapid growth of interest in powders and their surface properties in many diverse industries prompted the writing of this book for those who have the need to make meaningful measurements without the benefit of years of experience. It is intended as an introduction to some of the elementary theory and experimental methods used to study the surface area, porosity and density of powders. It may be found useful by those with little or no training in solid surfaces who have the need to quickly learn the rudiments of surface area, density and pore-size measurements. Syosset, New York S. Lowell May, 1983 J. E. Shields Xl List of symbols Use of symbols for purposes other than those indicated in the following list are so defined in the text. Some symbols not shown in this list are defined in the text. d adsorbate cross-sectional area A area; condensation coefficient; collision frequency C BET constant c concentration D diameter; coefficient of thermal diffusion E adsorption potential f permeability aspect factor F flow rate; force; feed rate 9 gravitational constant G Gibbs free energy GS free surface energy h heat of immersion per unit area; height H enthalpy Hi heat of immersion Hsv heat of adsorption BET intercept; filament current k thermal conductivity; specific reaction rate K Harkins-Jura constant I length L heat of liquefaction M mass M molecular weight n number of moles N number of molecules; number of particles N Avagadro's number .




Electrocatalysts for Low Temperature Fuel Cells


Book Description

Meeting the need for a text on solutions to conditions which have so far been a drawback for this important and trend-setting technology, this monograph places special emphasis on novel, alternative catalysts of low temperature fuel cells. Comprehensive in its coverage, the text discusses not only the electrochemical, mechanistic, and material scientific background, but also provides extensive chapters on the design and fabrication of electrocatalysts. A valuable resource aimed at multidisciplinary audiences in the fields of academia and industry.