Nanostructured Spinel Oxides as Bi-functional Electrocatalysts for Rechargeable Metal-air Batteries


Book Description

Due to continuously increasing energy demands, particularly with the emergence of electric vehicles (EV), smart energy grids, and portable electronics, advanced energy conversion and storage systems such as fuel-cells and metal-air batteries have drawn tremendous research and industrial attention. Even though the lithium-ion battery technology is the most developed and widely distributed energy device for a wide range of applications, some researchers view its energy density insufficient for fulfilling the ultimate requirements of highly energy intensive applications such as EVs. Recently, zinc-air batteries have re-gained research attention since the initial development in the 1970s due to their remarkably highly energy density and the potential to be electrically rechargeable. However, some technological hurdles such as low charge/discharge energy efficiency, and insufficient cycle stability have hampered commercialization and introduction of rechargeable zinc-air batteries to the market. The mentioned hurdles are currently the main challenges of rechargeable zinc-air battery developed, and they stem from the fact that the reaction kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are intrinsically very sluggish. The two are the main electrochemical reactions that govern the charge and discharge processes of a rechargeable metal-air battery at the air electrode, and these oxygen reactions must be facilitated by active electrocatalysts in order to progress them at practically viable and stable rates. Currently, the best known catalysts for ORR and OER are carbon supported platinum (Pt/C) and iridium (Ir/C), respectively. However, the use of these precious metal based catalysts for large scale applications like EVs and energy storage systems is prohibitively expensive. Additionally, the durability of these catalysts have been reported to be insufficient for long-term usage under normal device operating conditions. Perhaps most importantly, the precious metal based catalysts are strongly active towards only one of the two oxygen reactions required for rechargeable applications. For example, Pt/C is a strong ORR active catalyst, while Ir/C is a strong OER active catalyst. Recently in the literature, a simple physical mixture of these two catalysts have been used to render bi-functionality, but this method is very rudimentary and still requires two separate syntheses for each catalyst. This suggests that future bi-functionally active catalysts must not only be non-precious (inexpensive), but also a single active material capable of catalyzing both ORR and OER over the same active surface. Having said above, non-precious catalyst research, specifically for bi-functional ORR and OER electrocatalyses, has increased dramatically beginning in the 90's with a very popular and positive belief in the energy community that rechargeable lithium-air batteries could potentially replace lithium-ion batteries. This wave of interest has also picked up research in rechargeable zinc-air batteries since the electrochemical oxygen reactions that take place at the air electrodes are fundamentally very similar. Additionally, the use of zinc metal as the anode, which is one of Earth's most abundant elements, and the water-based (aqueous) solutions as the electrolyte (as opposed to organic ones) made the rechargeable zinc-air battery development very attractive and seemingly easy to scale-up. Moreover, primary (non-rechargeable) zinc-air batteries have already been commercialized and are available in the market as hearing aid batteries, leading many researchers to believe that a simple tuning of the current technology would lead to a successful secondary (rechargeable) zinc-air battery development. However, there are a set of technical difficulties specific to rechargeable zinc-air batteries that have slowed the development for the past few decades. Therefore, the work presented in this thesis aims to address the challenges of rechargeable zinc-air batteries particularly from the active bi-functional electrocatalyst standpoint to make them as commercially viable as possible.




Metal Oxide-Based Nanostructured Electrocatalysts for Fuel Cells, Electrolyzers, and Metal-Air Batteries


Book Description

Metal Oxide-Based Nanostructured Electrocatalysts for Fuel Cells, Electrolyzers, and Metal-Air Batteries is a comprehensive book summarizing the recent overview of these new materials developed to date. The book is motivated by research that focuses on the reduction of noble metal content in catalysts to reduce the cost associated to the entire system. Metal oxides gained significant interest in heterogeneous catalysis for basic research and industrial deployment. Metal Oxide-Based Nanostructured Electrocatalysts for Fuel Cells, Electrolyzers, and Metal-Air Batteries puts these opportunities and challenges into a broad context, discusses the recent researches and technological advances, and finally provides several pathways and guidelines that could inspire the development of ground-breaking electrochemical devices for energy production or storage. Its primary focus is how materials development is an important approach to produce electricity for key applications such as automotive and industrial. The book is appropriate for those working in academia and R&D in the disciplines of materials science, chemistry, electrochemistry, and engineering. Includes key aspects of materials design to improve the performance of electrode materials for energy conversion and storage device applications Reviews emerging metal oxide materials for hydrogen production, hydrogen oxidation, oxygen reduction and oxygen evolution Discusses metal oxide electrocatalysts for water-splitting, metal-air batteries, electrolyzer, and fuel cell applications




Spinel Oxides and Heteroatom-doped Carbon Nano-composite as Bi-functional Oxygen Electrocatalyst for Rechargeable Zinc-air Battery


Book Description

With continued increase in energy demand for high energy-required devices such as portable electronics and electric vehicles, development of innovative energy conversion and storage systems has attracted tremendous attention. Even though lithium-ion battery technology is currently the most developed energy storage technology and employed for multiple applications, their insufficient energy density and critical problem in intrinsic chemistry limit their further development for fulfilling the ultimate requirements. As an attractive alternative technology, metal-air battery has recently captured the spotlight as promising sustainable energy conversion and storage technology. Metal-air batteries with the open architecture provide many attractive characteristics containing environmental benignity, high power and energy densities. In addition, with a wide range of selection in different metals determines different energy capacity and efficiency. Among a various types of metal-air batteries, zinc-air battery system has especially been considered as the most mature technology due to its abundance, low cost, ease handling, and safe operation as well as high energy efficiency. However, some technological challenges of zinc-air batteries such as insufficient cycling durability, low charge/discharge activity and efficiency, and poor rate capability still must be addressed for future commercialization. These main challenges interrupting the development of electrically rechargeable zinc-air batteries are primarily due to very sluggish oxygen reduction and evolution reactions generated during discharge and charge processes on air electrode. The slow oxygen reactions create large overpotentials during both discharge and charge processes, which significantly decrease energy efficiency of zinc-air battery. Accordingly, the use of electrocatalysts in air electrode has been highly required to facilitate the reactions and even propel the zinc-air batteries to practical energy applications. Therefore, it is considerably necessary to develop highly active and durable bi-functional electrocatalysts toward both ORR and OER for the sake of successful commercialization of electrically rechargeable zinc-air batteries. In this point of view, design and synthesis of advanced oxygen electrocatalysts at low cost has been favorably considered. Despite extensive efforts made, however, developing air electrode catalysts with the high activity and the long durability at low cost remain a huge challenge because mostly precious metal-based catalysts such as platinum (Pt) and iridium (Ir) show greatly high activities toward ORR and OER, respectively. However, the use of the materials as electrocatalysts for zinc-air battery is highly challengeable in that they are extremely scarce, expensive, and unstable during the oxygen reactions. Therefore, it is significantly important to develop proper materials which are inexpensive, abundant, and stable during the oxygen reactions, where they are called “non-precious catalysts” primarily composed of transition metals or metal oxides, nano-carbons, and their hybrids. The strong objectives make us focus on the design of a class of novel composite architecture for high-performance electrochemical energy storage, electrically rechargeable zinc-air battery. In this work, the strategy is based on a fast solvation-induced assembly that directly exploits strong hydrophobicity of both cobalt oxide nanocrystals (Co3O4 NCs) and Nitrogen-doped carbon nanotubes (N-CNTs). A two-phase method is exploited to prepare the nearly mono-dispersed, highly crystalline, nano-sized cobalt oxide. The reaction of the two-phase system happens at the interface between the oil (nonpolar) and water (polar) phases and the interface is an exclusive site for both nucleation and growth. N-CNTs were synthesized by a single step chemical vapor deposition technique using either ferrocene as a catalyst and etylenediamine as a carbon source. Simply at first, cobalt oxide NCs and N-CNTs are dispersed in nonpolar solvent (e.g., toluene). Upon addition of polar solvent (e.g., methanol), solvation forces induce the hydrophobic cobalt oxide NCs to assemble around the hydrophobic CNTs, which leads to the formation of cobalt oxide NCs-decorated on the N-CNTs. As an electrochemical catalyst for air electrode, Co3O4 nanoparticle is a material with little ORR activity by itself. However, when it is decorated on Nitrogen-doped carbon nanotubes, their hybrid shows unexpected, surprisingly high performance in ORR that is further enhanced by nitrogen doping of N-CNTs. The Co3O4 NC/N-CNT hybrid exhibits comparable ORR catalytic activity but superior stability to a commercial carbon-supported Pt catalyst in alkaline solutions, thus leading to a novel bi-functional catalyst for ORR. The same hybrid is also highly active for OER, making it a high-performance non-precious metal-based bi-functional catalyst for both ORR and OER. The unusual catalytic activity arises from synergetic coupling effects between Co3O4 and N-CNTs. The full cell electrochemical catalytic activity is evaluated by preparing air electrodes of rechargeable zinc-air batteries utilizing ambient air to emphasize practicality. The galvanodynamic charge and discharge behaviors are superior to Pt/Carbon and N-CNT counterparts particularly at high applied current densities. Electrochemical impedance spectroscopy reveals that Co3O4 NC/N-CNT hybrid electrode results in significantly less internal, solid-electrolyte interface, and charge transfer resistances which lead to highly efficient electrochemical reactions. Superior rechargeability has also been confirmed where virtually no voltage drops are observed over 200 pulse cycles. The practicality of Co3O4 NC/N-CNT hybrid is highlighted by demonstrating comparable discharge voltages and greatly outperforming charge voltages with excellent electrochemical stability than commercial Pt/Carbon catalyst.




Advanced Bifunctional Electrochemical Catalysts for Metal-Air Batteries


Book Description

Metal-air batteries (MABs) have attracted attention because of their high specific energy, low cost, and safety features. This book discusses science and technology including material selection, synthesis, characterization, and their applications in MABs. It comprehensively describes various composite bifunctional electrocatalysts, corrosion/oxidation of carbon-containing air cathode catalysts, and how improvements can be achieved in the catalytic activities of oxygen reduction reaction and oxygen evolution reaction and their durability/stability. This book also analyzes, compares, and discusses composite bifunctional electrocatalysts in the applications of MABs, matching the fast information of commercial MABs in requirements. Aimed at researchers and industry professionals, this comprehensive work provides readers with an appreciation for what bifunctional composite electrocatalysts are capable of, how this field has grown in the past decades, and how bifunctional composite electrocatalysts can significantly improve the performance of MABs. It also offers suggestions for future research directions to overcome technical challenges and further facilitate research and development in this important area.







Nano-electrocatalyst for Oxygen Reduction Reaction


Book Description

Global warming switches our reliance from fossil fuels to green, sustainable renewable energy sources. Because of its promising nature, high-efficiency nano-electrocatalysts have sparked interest in renewable energy. Hydrogen fuel cell/polymer electrolyte membrane (PEM) vehicles are the most environmentally conscious electromobility vehicles, with a high energy density and quick refuelling technology, prompting the auto industry to launch a variety of PEM fuel cell vehicles around the world. Oxygen reduction reaction (ORR) primary research interests include fuel cells and metal-air batteries. The sluggish kinetic reaction of ORR, which is responsible for the rate-limiting reaction at the PEM fuel cell cathodic system, further decreases energy efficiency. Optimising ORR for market expansion with cost-effective and efficient nano-electrocatalysts, on the other hand, remains a challenge. The book covers fundamental ORR reaction kinetics theories, tools, and techniques. It also explains the nano electrocatalysts for ORR made of noble, non-noble, and nanocarbon materials. Finally, the book explores the applications of PEM fuel cells and metal-air batteries.




Design and Engineering of Hierarchically Porous Transition Metal-based Electrocatalysts for Rechargeable Zn-air Batteries


Book Description

Electrochemical oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are the critical cathodic and anodic reactions, respectively, in electrically rechargeable Zn-air battery. With a variety of advantages including relatively high energy density (1218 Wh kg-1), the abundance of zinc in the earth, and secure handling and safe operation, electrically rechargeable (secondary) Zn-air battery technology has been regarded as highly promising energy applications in consumer electronics, electric vehicles, and smart grid storage. Zn-air batteries consist of not only zinc anode, polymer separator, and an alkaline electrolyte that are typical battery components, but also air-breathing cathode that makes Zn-"air" battery unique technology. Unlike other general battery systems such as lithium-ion batteries, there is no active material stored in cathode, but gaseous oxygen molecules in the air are used as the fuel for energy-generating reaction in the air cathode of Zn-air technology. The reactions occurring during battery discharge and charge are ORR and OER, respectively, which are mostly dominating the overall energy efficiency of the Zn-air battery system due to their intrinsically sluggish kinetics. The high energy barrier attributed to conversions between oxygen molecules diffused from the air and hydroxide ions in the electrolyte at the thin layer of the electrode leads to low charge/discharge energy efficiency and insufficient cycle stability hindering the commercialization of rechargeable Zn-air batteries to the market. Therefore, it is necessarily required to facilitate the slow kinetics of oxygen electrocatalytic reactions by using bifunctionally active and durable oxygen electrocatalyst materials to progress the reactions at practically viable and stable rates. With the use of bifunctional oxygen catalysts, kinetics of ORR and OER can be improved, leading to enhancement of Zn-air battery performances such as higher operating voltage and longer battery cycling life. The current best-known catalysts for ORR and OER are noble metals, including platinum (Pt) and iridium (Ir), respectively. However, high cost and scarcity of the precious metal-based catalysts hinder their employment in large scale energy applications. Furthermore, the electrochemical stability of these materials is well known to be very insufficient for long term usage even under typical device operating conditions. Therefore, the development of non-precious transition metal-based electrocatalysts has significantly been a momentous research field. Along with this movement, the facile synthesis and inexpensive preparation of highly active and durable electrocatalysts will take the top priority for the fulfillment of practically available rechargeable Zn-air battery technology in a variety of energy applications from portable electronics to electric vehicles and smart grid storage systems. In this work, novel design strategies of bifunctionally active and durable electrocatalysts possessing robust three-dimensional framework with hierarchical porosity are presented. A porous structure with a large surface area is essential to improve the oxygen electrocatalysis since the oxygen reactions take place at the surface of materials, where active sites reside, and thereby the large surface indicating plenty of catalytically active sites enhances kinetics of the reactions. Additionally, the porous architecture facilitates diffusion of oxygen gas molecules during the oxygen electrocatalysis, leading to enhanced mass transport of reactants and reduced overpotentials for ORR and OER polarizations, eventually resulting in improved activities. In addition to the improvement of activities, electrochemical stability is an essential fundamental property for the rational design of electrocatalysts. Thus, the 3D porous structure must have robust framework which can endure the highly oxidative environment in OER potential range. Therefore, the work presented in this thesis is aiming for the design and engineering of hierarchically porous transition metal-based electrocatalysts involving high porosity as well as electrocatalytically robust frameworks to improve the oxygen electrocatalytic activities and durability and thereby put the rechargeable Zn-air battery technology at a commercially viable level. In the first study, a facile polymer template-derived method has been used to synthesize three-dimensionally ordered meso/macro-porous (3DOM) spinel cobalt oxide as a bifunctional oxygen electrocatalyst. Physicochemical characterizations have revealed the morphology of the designed electrocatalyst to be a hierarchically meso/macro-porous metal oxide framework. As investigated by electrochemical characterizations, 3DOM Co3O4 shows far enhanced ORR and OER activities with improved kinetics compared to the bulk material. The enhancement is majorly attributed to the five times higher specific surface area and significantly greater pore volume, leading to the increased number of catalytic active sites and facilitated diffusion of oxygen molecules into and out of the structure, respectively. Moreover, the robust frameworks of 3DOM Co3O4 helps to withstand harsh cycling environments by exhibiting significantly small performance reduction and retaining the original morphology. The improved oxygen electrocatalytic activity and durability have been well demonstrated in the rechargeable Zn-air battery system. 3DOM Co3O4 presents remarkably enhanced rechargeability over 200 cycles while retaining quite comparable operating voltage gap in comparison with the precious benchmark catalyst. In the second study, palladium (Pd) nanoparticle is deposited on the surface of 3DOM Co3O4 via a simple chemical reduction process. The morphological advantages of the 3DOM framework, as confirmed in the previous study, are expected to facilitate diffusion of oxygen molecules into and out of the structure leading to the decreased overpotentials during ORR and OER. However, using metal oxides as electrocatalysts restricts fast electron transfer leading to limited activity for oxygen catalysis due to their intrinsically low electrical conductivity. Therefore, Pd nanoparticles are introduced into 3DOM Co3O4 by expecting synergy from the combination of the morphological advantage of 3DOM architecture and the significant thermodynamic stability as well as the excellent ORR activity of palladium metal. Electrochemical characterizations have revealed that the combination demonstrates synergistically improved bifunctional electrocatalytic activity and durability. Moreover, computational simulation via density-functional-theory (DFT) verifies Pd@Co3O4(3DOM) is superior in two ways; (i) Activity-wise: the d-band center of Pd deposited on 3DOM Co3O4 was found to decrease significantly, resulting in increased electron abundance at the Fermi level, which in turn enhanced the overall electrical conductivity; (ii) Durability-wise: synergistic hybrid of Pd and 3DOM Co3O4 resulted in a significantly improved corrosion resistance, due to the much higher carbon oxidation potential and bulk-like dissolution potential of Pd nanoparticles on 3DOM Co3O4. The remarkable electrochemical activities and stabilities of Pd@3DOM-Co3O4 obtained from the half-cell testing resulted in excellent rechargeability of a prototype Zn-air battery, demonstrating the synergistic introduction of Pd into 3DOM Co3O4. In the last study, a type of metal-organic-framework (MOF) is selected as a template to synthesize MOF-based electrocatalyst possessing robust framework with multi-level porosity. Typically, MOF materials consist of metal centers linked by functional organic ligands, which gives them unique material characteristics such as high porosity and surface area, morphological and compositional flexibility, and high crystallinity. Especially, transition metal-based Prussian blue analogue (PBA) nanocubes with a chemical formula MxII[MyIII(CN)6]z▪H2O, where MII and MIII are divalent and trivalent transition metal cations, respectively, are employed as the MOF precursors due to a several material advantages such as simple precipitation synthesis, various possible compositions, and robust structure with high porosity




Multifunctional Nanocomposites for Energy and Environmental Applications


Book Description

Dieses klar strukturierte Fachbuch legt den Schwerpunkt auf praktische Anwendungen von Nanokompositen und Nanotechnologien im Rahmen einer nachhaltigen Entwicklung. Es zeigt, wie Nanokomposite zur Lösung von Energie- und Umweltproblemen beitragen können, bietet zusätzlich einen breiten Überblick über Anwendungen im Energiebereich und behandelt eine einzigartige Auswahl an Umweltthemen. Der erste Teil beschäftigt sich mit Anwendungen wie Lithium-Ionen-Batterien, Solarzellen, Katalyse, Gewinnung von Wärme und Energie aus Abfällen mithilfe der Thermoelektrizität und Wasserspaltung. Der zweite Teil beleuchtet in einzigartiger Weise ökologische Themen, darunter Atommüllmanagement sowie die Abscheidung und Speicherung von Kohlendioxid. Dieses Fachbuch vermittelt auf erfolgreiche Weise Grundlagenwissen für Einsteiger als auch die neuesten Erkenntnisse für erfahrene Wissenschaftler, Ingenieure und Forscher aus der Industrie.




Zinc-Air Batteries


Book Description

Zinc–Air Batteries Authoritative and comprehensive resource covering foundational knowledge of zinc–air batteries as well as their practical applications Zinc–Air Batteries provides a comprehensive understanding of the history and development of Zn–air batteries, with a systematic overview of components, design, and device innovation, along with recent advances in the field, especially with regards to the cathode catalyst design made by cutting-edge materials, engineering processes, and technologies. In particular, design principles regarding the key components of Zn–air batteries, ranging from air cathode, to zinc anode, and to electrolyte, are emphasized. Furthermore, industrial developments of Zn–air batteries are discussed and emerging new designs of Zn–air batteries are also introduced. The authors argue that designing advanced Zn–air battery technologies is important to the realization of efficient energy storage and conversion—and, going further, eventually holds the key to a sustainable energy future and a carbon-neutral goal. Edited and contributed to by leading professionals and researchers in the field, Zinc–Air Batteries also contains information regarding: Design of oxygen reduction catalysts in primary zinc–air batteries, including precious metals, single-atoms, carbons, and transition metal oxides Design of bifunctional oxygen catalysts in rechargeable zinc–air batteries, covering specific oxygen redox reactions and catalyst candidates Design of three-dimensional air cathode in zinc–air batteries, covering loading of carbon-based and transition metal catalysts, plus design of the three-phase interface Design of electrolyte for zinc–air batteries, including liquid electrolytes (e.g., alkaline) and gel polymer electrolytes (e.g., PVA hydrogel) For students, researchers, and instructors working in battery technologies, materials science, and electrochemistry, and for industry and government representatives for decision making associated with energy and transportation, Zinc–Air Batteries summarizes the research results on Zn–air batteries and thereby helps researchers and developers to implement the technology in practice.




Frontiers in Materials: Rising Stars


Book Description

The Frontiers in Materials Editorial Office team are delighted to present the inaugural “Frontiers in Materials: Rising Stars” article collection, showcasing the high-quality work of internationally recognized researchers in the early stages of their independent careers. All Rising Star researchers featured within this collection were individually nominated by the Journal’s Chief Editors in recognition of their potential to influence the future directions in their respective fields. The work presented here highlights the diversity of research performed across the entire breadth of the materials science and engineering field, and presents advances in theory, experiment and methodology with applications to compelling problems. This Editorial features the corresponding author(s) of each paper published within this important collection, ordered by section alphabetically, highlighting them as the great researchers of the future. The Frontiers in Materials Editorial Office team would like to thank each researcher who contributed their work to this collection. We would also like to personally thank our Chief Editors for their exemplary leadership of this article collection; their strong support and passion for this important, community-driven collection has ensured its success and global impact. Laurent Mathey, PhD Journal Development Manager