Nanotechnology


Book Description

The emergence of nanoscience portends a revolution in technology that will soon impact virtually every facet of our technological lives. Yet there is little understanding of what it is among the educated public and often among scientists and engineers in other disciplines. Furthermore, despite the emergence of undergraduate courses on the subject, no basic textbooks exist. Nanotechnology: Basic Science and Emerging Technologies bridges the gap between detailed technical publications that are beyond the grasp of nonspecialists and popular science books, which may be more science fiction than fact. It provides a fascinating, scientifically sound treatment, accessible to engineers and scientists outside the field and even to students at the undergraduate level. After a basic introduction to the field, the authors explore topics that include molecular nanotechnology, nanomaterials and nanopowders, nanoelectronics, optics and photonics, and nanobiometrics. The book concludes with a look at some cutting-edge applications and prophecies for the future. Nanoscience will bring to the world technologies that today we can only imagine and others of which we have not yet dreamt. This book lays the groundwork for that future by introducing the subject to those outside the field, sparking the imaginations of tomorrow's scientists, and challenging them all to participate in the advances that will bring nanotechnology's potential to fruition.




Nanotechnology


Book Description

Nanotechnology: An Introduction, Second Edition, is ideal for the newcomer to nanotechnology, someone who also brings a strong background in one of the traditional disciplines, such as physics, mechanical or electrical engineering, or chemistry or biology, or someone who has experience working in microelectromechanical systems (MEMS) technology. This book brings together the principles, theory, and practice of nanotechnology, giving a broad, yet authoritative, introduction to the possibilities and limitations of this exciting and rapidly developing field. The book's author, Prof Ramsden, also discusses design, manufacture, and applications and their impact on a wide range of nanotechnology areas. - Provides an overview of the rapidly growing and developing field of nanotechnology - Focuses on key essentials, and structured around a robust anatomy of the subject - Brings together the principles, theory, and practice of nanotechnology, giving a broad, yet authoritative, introduction to the possibilities and limitations of this exciting and rapidly developing field




Introduction to Nanotechnology


Book Description

This self-confessed introduction provides technical administrators and managers with a broad, practical overview of the subject and gives researchers working in different areas an appreciation of developments in nanotechnology outside their own fields of expertise.




An Introduction to Nanoscience and Nanotechnology


Book Description

"Part of this book adapted from "Introduction aux nanosciences et aux nanotechnologies" published in France by Hermes Science/Lavoisier in 2006."




Nanostructures and Nanotechnology


Book Description

A carefully developed textbook focusing on the fundamental principles of nanoscale science and nanotechnology.




Introduction to Nanoscience and Nanotechnology


Book Description

The maturation of nanotechnology has revealed it to be a unique and distinct discipline rather than a specialization within a larger field. Its textbook cannot afford to be a chemistry, physics, or engineering text focused on nano. It must be an integrated, multidisciplinary, and specifically nano textbook. The archetype of the modern nano textbook




Polymer Science and Nanotechnology


Book Description

Polymer Science and Nanotechnology: Fundamentals and Applications brings together the latest advances in polymer science and nanoscience. Sections explain the fundamentals of polymer science, including key aspects and methods in terms of molecular structure, synthesis, characterization, microstructure, phase structure and processing and properties before discussing the materials of particular interest and utility for novel applications, such as hydrogels, natural polymers, smart polymers and polymeric biomaterials. The second part of the book examines essential techniques in nanotechnology, with an emphasis on the utilization of advanced polymeric materials in the context of nanoscience. Throughout the book, chapters are prepared so that materials and products can be geared towards specific applications. Two chapters cover, in detail, major application areas, including fuel and solar cells, tissue engineering, drug and gene delivery, membranes, water treatment and oil recovery. - Presents the latest applications of polymers and polymeric nanomaterials, across energy, biomedical, pharmaceutical, and environmental fields - Contains detailed coverage of polymer nanocomposites, polymer nanoparticles, and hybrid polymer-metallic nanoparticles - Supports an interdisciplinary approach, enabling readers from different disciplines to understand polymer science and nanotechnology and the interface between them




Nanotechnology


Book Description

Advances in physics, molecular biology, and computer science are converging on the capacity to control, with molecular precision, the structure and function of matter. These twenty original contributions provide the first broad-based multidisciplinary definition and examination of the revolutionary new discipline of molecular engineering, or nanotechnology. They address both the promise as well as the economic, environmental, and cultural challenges of this emerging atomic-scale technology. Leaders in their field describe current technologies that feed into nanotechnology - atomic imaging and positioning, protein engineering, and the de novo, design and synthesis of self-assembling molecular structures. They present development strategies for coordinating recent work in chemistry, biotechnology, and scanning-probe microscopy in order to successfully design and engineer molecular systems. They also explore advances in molecular and quantum electronics as well as reversible computational systems and the fundamental physical constraints on computation. Additional chapters discuss research efforts in Japan and present the prospects of nanotechnology as seen from the perspective of a microtechnologist. The final section looks at the implications of success, including the prospects of enormous computational power and the radical consequences of molecular mechanical systems in the fields of medicine and life extension. Contributors Robert Birge. Federico Capasso. BC Crandall. K. Eric Drexler. Gregory Fahy. Richard Feynman. John Foster. Tracy Handel. Bill Joy. Arthur Kantrowitz. Joseph Mallon. Norman Margolus. Ralph Merkle. Lester Milbrath. Gordon Tullock. Hiroyuki Sasabe. Michael Ward




Fundamentals of Nanotechnology


Book Description

WINNER 2009 CHOICE AWARD OUTSTANDING ACADEMIC TITLE! Nanotechnology is no longer a subdiscipline of chemistry, engineering, or any other field. It represents the convergence of many fields, and therefore demands a new paradigm for teaching. This textbook is for the next generation of nanotechnologists. It surveys the field’s broad landscape, exploring the physical basics such as nanorheology, nanofluidics, and nanomechanics as well as industrial concerns such as manufacturing, reliability, and safety. The authors then explore the vast range of nanomaterials and systematically outline devices and applications in various industrial sectors. This color text is an ideal companion to Introduction to Nanoscience by the same group of esteemed authors. Both titles are also available as the single volume Introduction to Nanoscience and Nanotechnology Qualifying instructors who purchase either of these volumes (or the combined set) are given online access to a wealth of instructional materials. These include detailed lecture notes, review summaries, slides, exercises, and more. The authors provide enough material for both one- and two-semester courses.




Basic Principles of Nanotechnology


Book Description

The book allows the reader to have a basic understanding of the structure and properties of nanoscale materials routinely used in nanotechnology-based research and industries. To add, the book describes the operation of nanoscale transistors and the processes used to fabricate the devices. Additionally, it presents research involving the use of carbon nanotubes, graphene, and molecules to create non-silicon based electronic devices. It aims to provide an understanding of the operation of the most frequently used fabrication and characterization procedures, such as scanning electron microscopy, atomic force microscopy, etch, e-beam lithography, and photolithography. Provides explanations of the common techniques used in nanofabrication. Focuses on nanomaterials that are almost exclusively used in academic research and incorporated in consumer materials, such as carbon nanotubes, graphene, metal nanoparticles, quantum dots, and conductive polymers. Each chapter begins with a list of key objectives describing major content covered. Includes end-of-chapter questions to reinforce chapter content.