Materials Science and Engineering: Concepts, Methodologies, Tools, and Applications


Book Description

The design and study of materials is a pivotal component to new discoveries in the various fields of science and technology. By better understanding the components and structures of materials, researchers can increase its applications across different industries. Materials Science and Engineering: Concepts, Methodologies, Tools, and Applications is a compendium of the latest academic material on investigations, technologies, and techniques pertaining to analyzing the synthesis and design of new materials. Through its broad and extensive coverage on a variety of crucial topics, such as nanomaterials, biomaterials, and relevant computational methods, this multi-volume work is an essential reference source for engineers, academics, researchers, students, professionals, and practitioners seeking innovative perspectives in the field of materials science and engineering.




Environmental Nanotechnology


Book Description

Explore the Properties of Today's Widely Used Nanomaterials— and Assess Their Potentially Harmful Effects on the Environment Environmental Nanotechnology is the first book to assist you in both understanding the properties of new nanomaterial-centered technology and assessing the potentially harmful effects these materials may have on the environment. Written by a team of 29 leading experts from around the world, this comprehensive book presents cutting-edge coverage of the fabrication, characterization, and measurement of nanomaterials...emerging markets for nanomaterials...nanotechnologies in the energy industry...nanotechnologies for environmental quality...nanotechnology transport and fate in the environment...toxicological impacts of nanomaterials...and much more. Filled with detailed illustrations, Environmental Nanotechnology features: State-of-the-art techniques for the characterization and measurement of nanomaterials The latest findings on the transport and fate of nanomaterials in the environment Nanotechnologies for energy production, storage, and distribution In-depth analyses of the ecotoxicological impacts of nanomaterials New methods for developing nanomaterials with less environmental risk Inside This Landmark Environmental Engineering Guide _ • Nanomaterials: New Challenges and Opportunities • Fabrication of Nanomaterials • Characterization and Measurement of Nanomaterials • Emerging Markets for Nanomaterials • Nanomaterial-Enabled Technologies for Energy Production, Storage, and Distribution • Nanomaterial-Enabled Technologies for Environmental Quality • Nanomaterial Transport and Fate in the Environment • Ecotoxicological Impacts of Nanomaterials • Toxicological Impacts of Nanomaterials




Nanotechnology in Environmental Science, 2 Volumes


Book Description

An overview of the current state of nanotechnology-based devices with applications in environmental science, focusing on nanomaterials and polymer nanocomposites. The handbook pays special attention to those nanotechnology-based approaches that promise easier, faster and cheaper processes in environmental monitoring and remediation. Furthermore, it presents up-to-date information on the economics, toxicity and regulations related to nanotechnology in detail. The book closes with a look at the role of nanotechnology for a green and sustainable future. With its coverage of existing and soon-to-be-realized devices this is an indispensable reference for both academic and corporate R&D.




Sustainable Nanotechnology for Environmental Remediation


Book Description

Sustainable Nanotechnology for Environmental Remediation provides a single-source solution to researchers working in environmental, wastewater management, biological and composite nanomaterials applications. It addresses the potential environmental risks and uncertainties surrounding the use of nanomaterials for environmental remediation, giving an understanding of their impact on ecological receptors in addition to their potential benefits. Users will find comprehensive information on the application of state-of-the-art processes currently available to synthesize advanced green nanocomposite materials and biogenic nanomaterials. Other sections explore a wide range of promising approaches for green nanotechnologies and nanocomposites preparations. Case study chapters connect materials engineering and technology to the social context for a sustainable environment. Applications and different case studies provide solutions to the challenges faced by industry, thus minimizing negative social impacts. - Provides information on the use of biologically mediated synthetic protocols to generate nanomaterials - Discusses a wide range of promising?approaches?for?green nanotechnologies and nanocomposites preparations - Presents novel fabrication techniques for bionanocomposites, paving the way for the development of a new generation of advanced materials that can cope with spatiotemporal multi-variant environments




Nanotechnology for Environmental Management


Book Description

"Nanotechnology for Environmental Management" is your gateway to the latest advancements in environmental science and technology. Edited by leading international scientists, this book delves into the diverse approaches and applications of nanomaterials and nanotechnologies, offering insights into their potential for environmental remediation, energy management, and sustainable development. Each chapter showcases cutting-edge innovations, making this book an essential reference for students, researchers, scientists, technicians, and professionals in environmental management and regulation. Explore the promises and challenges of nanotechnology in addressing environmental issues, and gain valuable perspectives on the future of sustainable development. With its thorough examination of state-of-the-art nanotechnological solutions, "Nanotechnology for Environmental Management" is your indispensable guide to navigating the complexities of environmental science and technology.




Nanotechnology


Book Description

Should you adopt nanotechnology? If you have already adopted it, what do you need to know? What are the risks? Nanomaterials and nanotechnologies are revolutionizing the ways we treat disease, produce energy, manufacture products, and attend to our daily wants and needs. To continue to capture the promise of these transformative products, however, we need to ask critical questions about the broader impacts of nanotechnology on society and the environment. Exploring these questions, the second edition of Nanotechnology: Health and Environmental Risks gives you the latest tools to understand the risks of nanotechnology and make better decisions about using it. Examining the state of the science, the book discusses what is known, and what still needs to be understood, about nanotechnology risk. It looks at the uses of nanotechnology for energy, industry, medicine, technology, and consumer applications and explains how to determine whether there is risk—even when there is little reliable evidence—and how to manage it. Contributors cover a wide range of topics, including: Current concerns, among them perceived risks and the challenges of evaluating emerging technology A historical perspective on product safety and chemicals policy The importance of being proactive about identifying and managing health and environmental risks during product development How the concepts of sustainability and life cycle assessment can guide nanotechnology product development Methods for evaluating nanotechnology risks, including screening approaches and research How to manage risk when working with nanoscale materials at the research stage and in occupational environments What international organizations are doing to address risk issues How risk assessment can inform environmental decision making Written in easy-to-understand language, without sacrificing complexity or scientific accuracy, this book offers a wide-angle view of nanotechnology and risk. Supplying cutting-edge approaches and insight, it explains what types of risks could exist and what you can do to address them. What’s New in This Edition Updates throughout, reflecting advances in the field, new literature, and policy developments A new chapter on nanotechnology risk communication, including insights into risk perceptions and the mental models people use to evaluate technological risks An emphasis on developing nanotechnology products that are sustainable in the long term Advances in the understanding of nanomaterials toxicity Cutting-edge research on occupational exposure to nanoparticles Changes in the international landscape of organizations working on the environmental, health, and safety aspects of nanotechnologies




Environmental Nanotechnology


Book Description

Environmental nanotechnology is considered to play a key role in shaping of current environmental engineering and science practices. This book titled "Environmental Nanotechnology" covers the advanced materials, devices, and system development for use in the environmental protection. The development of nano-based materials, understanding their chemistry and characterization using techniques like X- Ray diffraction, FT-IR, EDX, scanning electron microscope (SEM), transmission electron microscope (TEM), high resolution-TEM, etc is included. It also highlights the scope for their applications in environmental protection, environmental remediation and environmental biosensors for detection, monitoring and assessment. Key Features: Covers basic to advanced Nano-based materials, their synthesis, development, characterization and applications and all the updated information related to environmental nanotechnology. Discusses implications of nanomaterials on the environment and applications of nanotechnology to protect the environment. Illustrates specific topics such as ethics of nanotechnology development, Nano-biotechnology, and application in wastewater technology. Includes applications of nanomaterials for combating global climate change and carbon sequestration. Gives examples of field applications of environmental nanotechnology. This book covers advanced materials, devices, and system developments for use in environmental protection. The development of nano-based materials, understanding its chemistry and characterization by the use of X-Ray diffraction, FT-IR, EDX, scanning electron microscope (SEM), transmission electron microscope (TEM), and high resolution-TEM give the scope for their application in environmental protection, environmental remediation, and environmental biosensors for detection, monitoring, and assessment. The green chemistry based on nano-based materials prevents pollution and controls environmental contaminants.




Nanotechnology


Book Description

An authoritative, in-depth exploration of the environmental consequences of nanotechnology Nanotechnology is revolutionizing the chemical, telecom, biotech, pharmaceutical, health care, aerospace, and computer industries, among others, and many exciting new nanotech applications are envisioned for the near future. While the rapid pace of innovation has been truly inspiring, much remains to be learned about the potential environmental and health risks posed by this nascent technology and its byproducts. So important is this issue that the ultimate success or failure of nanotechnology may well depend on how effectively science and industry address these concerns in the years ahead. Written by two highly accomplished environmental professionals, Nanotechnology: Environmental Implications and Solutions brings scientists, engineers, and policymakers up to speed on the current state of knowledge in this vitally important area. Professor Theodore and Dr. Kunz provide a concise review of nano-fundamentals and explore background issues surrounding nanotechnology and its environmental impact. They then follow up with in-depth discussions of: * The control, monitoring, and reduction of nanotech byproducts and their impact on the air, water, and land * Health risks associated with nanotechnology, and methods to assess and control them * Nanotech hazard risk assessment-including emergency response planning and personnel training * Multimedia approaches that are available for the analysis of the impact of nanotechnology in the chemical, manufacturing, and waste disposal industries * The future of nanotechnology and the "Industrial Revolution II" * The legal implications of nanotechnology * Societal and ethical implications of nanotechnology-based materials and processing method Assuming only a basic knowledge of physics, chemistry, and mathematics on behalf of its readers, Nanotechnology: Environmental Implications and Solutions makes fascinating and useful reading for engineers, scientists, administrators, environmental regulatory officials, and public policy makers, as well as students in a range of science and engineering disciplines.







Nanotechnology for Environmental Decontamination


Book Description

CUTTING-EDGE NANOTECHNOLOGY TECHNIQUES AND APPLICATIONS FOR ENVIRONMENTAL DECONTAMINATION Written by a team of global experts, Nanotechnology for Environmental Contamination covers the latest methods for using nanomaterials, processes, and tools to remediate toxin-contaminated water, air, soil, groundwater, and wastewater. This groundbreaking work discusses the use of nanotechnology to neutralize microbes, pesticides, heavy metals, industrial chemicals, chemical and biological warfare agents, and other toxic substances. In-depth details on the physics, chemistry, and technology of nanomaterials, nanostructures, and nanotechnology for decontamination are included in this authoritative resource. Preparation and application of inner skin hollow fiber nanoporous membrane Photocatalytic inactivation of water and air pollution Application of nano TiO, catalyst in wastewater treatment Photoelectrocatalytic degradation of organic contaminants at nanosemiconductor film electrodes under visible light irradiation Disinfection of microbes by nanoparticles Water disinfection and wastewater decontamination by solar photocatalysis using nanomaterials The role of nanotechnology for decontamination of chemical warfare agents Nanostructured bioassemblies for environmental bioremediation Reactive nanoparticles for the treatment of chlorinated dense nonaqueous phase liquids (DNAPL) in soil and groundwater Persistent pesticides: detection and control using nanotechnology Decontaminating chemical and biological warfare agents and related toxins with nanomaterials