NASA's Science Activation Program


Book Description

The National Aeronautics and Space Administration (NASA) is one of the United States' leading federal science, technology, engineering, and mathematics (STEM) agencies and plays an important role in the landscape of STEM education. In 2015, NASA's Science Mission Directorate (SMD) created the Science Activation (SciAct) program to increase the overall coherence of SMD's education efforts, to support more effective, sustainable, and efficient use of SMD science discoveries for education, and to enable NASA scientists and engineers to engage more effectively and efficiently in the STEM learning environment with learners of all ages. SciAct is now transitioning into its second round of funding, and it is beneficial to review the program's portfolio and identify opportunities for improvement. NASA's Science Activation Program: Achievements and Opportunities assesses SciAct's efforts towards meeting its goals. The key objectives of SciAct are to enable STEM education, improve U.S. scientific literacy, advance national education goals, and leverage efforts through partnerships. This report describes and assesses the history, current status, and vision of the program and its projects. It also provides recommendations to enhance NASA's efforts through the SciAct program.




NASA's Science Activation Program


Book Description

The National Aeronautics and Space Administration (NASA) is one of the United States' leading federal science, technology, engineering, and mathematics (STEM) agencies and plays an important role in the landscape of STEM education. In 2015, NASA's Science Mission Directorate (SMD) created the Science Activation (SciAct) program to increase the overall coherence of SMD's education efforts, to support more effective, sustainable, and efficient use of SMD science discoveries for education, and to enable NASA scientists and engineers to engage more effectively and efficiently in the STEM learning environment with learners of all ages. SciAct is now transitioning into its second round of funding, and it is beneficial to review the program's portfolio and identify opportunities for improvement. NASA's Science Activation Program: Achievements and Opportunities assesses SciAct's efforts towards meeting its goals. The key objectives of SciAct are to enable STEM education, improve U.S. scientific literacy, advance national education goals, and leverage efforts through partnerships. This report describes and assesses the history, current status, and vision of the program and its projects. It also provides recommendations to enhance NASA's efforts through the SciAct program.




NASA Space Flight Program and Project Management Handbook


Book Description

This book is in full-color - other editions may be in grayscale (non-color). The hardback version is ISBN 9781680920512 and the paperback version is ISBN 9781680920505. The NASA Space Flight Program and Project Management Handbook (NASA/SP-2014-3705) is the companion document to NPR 7120.5E and represents the accumulation of knowledge NASA gleaned on managing program and projects coming out of NASA's human, robotic, and scientific missions of the last decade. At the end of the historic Shuttle program, the United States entered a new era that includes commercial missions to low-earth orbit as well as new multi-national exploration missions deeper into space. This handbook is a codification of the "corporate knowledge" for existing and future NASA space flight programs and projects. These practices have evolved as a function of NASA's core values on safety, integrity, team work, and excellence, and may also prove a resource for other agencies, the private sector, and academia. The knowledge gained from the victories and defeats of that era, including the checks and balances and initiatives to better control cost and risk, provides a foundation to launch us into an exciting and healthy space program of the future.




NASA Strategic Plan


Book Description




NASA Activities


Book Description




A Framework for K-12 Science Education


Book Description

Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.




Recapturing a Future for Space Exploration


Book Description

More than four decades have passed since a human first set foot on the Moon. Great strides have been made in our understanding of what is required to support an enduring human presence in space, as evidenced by progressively more advanced orbiting human outposts, culminating in the current International Space Station (ISS). However, of the more than 500 humans who have so far ventured into space, most have gone only as far as near-Earth orbit, and none have traveled beyond the orbit of the Moon. Achieving humans' further progress into the solar system had proved far more difficult than imagined in the heady days of the Apollo missions, but the potential rewards remain substantial. During its more than 50-year history, NASA's success in human space exploration has depended on the agency's ability to effectively address a wide range of biomedical, engineering, physical science, and related obstacles-an achievement made possible by NASA's strong and productive commitments to life and physical sciences research for human space exploration, and by its use of human space exploration infrastructures for scientific discovery. The Committee for the Decadal Survey of Biological and Physical Sciences acknowledges the many achievements of NASA, which are all the more remarkable given budgetary challenges and changing directions within the agency. In the past decade, however, a consequence of those challenges has been a life and physical sciences research program that was dramatically reduced in both scale and scope, with the result that the agency is poorly positioned to take full advantage of the scientific opportunities offered by the now fully equipped and staffed ISS laboratory, or to effectively pursue the scientific research needed to support the development of advanced human exploration capabilities. Although its review has left it deeply concerned about the current state of NASA's life and physical sciences research, the Committee for the Decadal Survey on Biological and Physical Sciences in Space is nevertheless convinced that a focused science and engineering program can achieve successes that will bring the space community, the U.S. public, and policymakers to an understanding that we are ready for the next significant phase of human space exploration. The goal of this report is to lay out steps and develop a forward-looking portfolio of research that will provide the basis for recapturing the excitement and value of human spaceflight-thereby enabling the U.S. space program to deliver on new exploration initiatives that serve the nation, excite the public, and place the United States again at the forefront of space exploration for the global good.




Science Teachers' Learning


Book Description

Currently, many states are adopting the Next Generation Science Standards (NGSS) or are revising their own state standards in ways that reflect the NGSS. For students and schools, the implementation of any science standards rests with teachers. For those teachers, an evolving understanding about how best to teach science represents a significant transition in the way science is currently taught in most classrooms and it will require most science teachers to change how they teach. That change will require learning opportunities for teachers that reinforce and expand their knowledge of the major ideas and concepts in science, their familiarity with a range of instructional strategies, and the skills to implement those strategies in the classroom. Providing these kinds of learning opportunities in turn will require profound changes to current approaches to supporting teachers' learning across their careers, from their initial training to continuing professional development. A teacher's capability to improve students' scientific understanding is heavily influenced by the school and district in which they work, the community in which the school is located, and the larger professional communities to which they belong. Science Teachers' Learning provides guidance for schools and districts on how best to support teachers' learning and how to implement successful programs for professional development. This report makes actionable recommendations for science teachers' learning that take a broad view of what is known about science education, how and when teachers learn, and education policies that directly and indirectly shape what teachers are able to learn and teach. The challenge of developing the expertise teachers need to implement the NGSS presents an opportunity to rethink professional learning for science teachers. Science Teachers' Learning will be a valuable resource for classrooms, departments, schools, districts, and professional organizations as they move to new ways to teach science.




The Brain in Space


Book Description




Barriers and Opportunities for 2-Year and 4-Year STEM Degrees


Book Description

Nearly 40 percent of the students entering 2- and 4-year postsecondary institutions indicated their intention to major in science, technology, engineering, and mathematics (STEM) in 2012. But the barriers to students realizing their ambitions are reflected in the fact that about half of those with the intention to earn a STEM bachelor's degree and more than two-thirds intending to earn a STEM associate's degree fail to earn these degrees 4 to 6 years after their initial enrollment. Many of those who do obtain a degree take longer than the advertised length of the programs, thus raising the cost of their education. Are the STEM educational pathways any less efficient than for other fields of study? How might the losses be "stemmed" and greater efficiencies realized? These questions and others are at the heart of this study. Barriers and Opportunities for 2-Year and 4-Year STEM Degrees reviews research on the roles that people, processes, and institutions play in 2-and 4-year STEM degree production. This study pays special attention to the factors that influence students' decisions to enter, stay in, or leave STEM majorsâ€"quality of instruction, grading policies, course sequences, undergraduate learning environments, student supports, co-curricular activities, students' general academic preparedness and competence in science, family background, and governmental and institutional policies that affect STEM educational pathways. Because many students do not take the traditional 4-year path to a STEM undergraduate degree, Barriers and Opportunities describes several other common pathways and also reviews what happens to those who do not complete the journey to a degree. This book describes the major changes in student demographics; how students, view, value, and utilize programs of higher education; and how institutions can adapt to support successful student outcomes. In doing so, Barriers and Opportunities questions whether definitions and characteristics of what constitutes success in STEM should change. As this book explores these issues, it identifies where further research is needed to build a system that works for all students who aspire to STEM degrees. The conclusions of this report lay out the steps that faculty, STEM departments, colleges and universities, professional societies, and others can take to improve STEM education for all students interested in a STEM degree.