Accidental Injury


Book Description

This book provides a state-of-the-art look at the applied biomechanics of accidental injury and prevention. The editors, Drs. Narayan Yoganandan, Alan M. Nahum and John W. Melvin are recognized international leaders and researchers in injury biomechanics, prevention and trauma medicine. They have assembled renowned researchers as authors for 29 chapters to cover individual aspects of human injury assessment and prevention. This third edition is thoroughly revised and expanded with new chapters in different fields. Topics covered address automotive, aviation, military and other environments. Field data collection; injury coding/scaling; injury epidemiology; mechanisms of injury; human tolerance to injury; simulations using experimental, complex computational models (finite element modeling) and statistical processes; anthropomorphic test device design, development and validation for crashworthiness applications in topics cited above; and current regulations are covered. Risk functions and injury criteria for various body regions are included. Adult and pediatric populations are addressed. The exhaustive list of references in many areas along with the latest developments is valuable to all those involved or intend to pursue this important topic on human injury biomechanics and prevention. The expanded edition will interest a variety of scholars and professionals including physicians, biomedical researchers in many disciplines, basic scientists, attorneys and jurists involved in accidental injury cases and governmental bodies. It is hoped that this book will foster multidisciplinary collaborations by medical and engineering researchers and academicians and practicing physicians for injury assessment and prevention and stimulate more applied research, education and training in the field of accidental-injury causation and prevention.




Federal Register


Book Description




Biomechanics


Book Description

The last ten years have seen explosive growth in the technology available to the collision analyst, changing the way reconstruction is practiced in fundamental ways. The greatest technological advances for the crash reconstruction community have come in the realms of photogrammetry and digital media analysis. The widespread use of scanning technology has facilitated the implementation of powerful new tools to digitize forensic data, create 3D models and visualize and analyze crash vehicles and environments. The introduction of unmanned aerial systems and standardization of crash data recorders to the crash reconstruction community have enhanced the ability of a crash analyst to visualize and model the components of a crash reconstruction. Because of the technological changes occurring in the industry, many SAE papers have been written to address the validation and use of new tools for collision reconstruction. Collision Reconstruction Methodologies Volumes 1-12 bring together seminal SAE technical papers surrounding advancements in the crash reconstruction field. Topics featured in the series include: • Night Vision Study and Photogrammetry • Vehicle Event Data Recorders • Motorcycle, Heavy Vehicle, Bicycle and Pedestrian Accident Reconstruction The goal is to provide the latest technologies and methodologies being introduced into collision reconstruction - appealing to crash analysts, consultants and safety engineers alike.










Highway Safety


Book Description




Safety Test Methodology and Structural Crashworthiness 2006


Book Description

"This SAE Special Publication presents papers from the sessions Safety Test Methodology and Structural Crashworthiness held during the SAE 2006 World Congress, held April 3-6, 2006 in Detroit, Michigan, USA."--Pref.




Highway Safety


Book Description

Fishing boats and ferryboats. Sailboats and tugs. Boats on the water. Come aboard.




Lumbar Injury Biomechanics


Book Description

The amount of load that can be borne by the different components of the lumbar region is fairly well understood, as are resulting injuries from overloading. Less severe lumbar injuries involve a wide range of factors, including: heredity, obesity, age, occupation, sports, cardiovascular risk factors, and depression. Some of the most painful conditions that require high levels of care involve lumbar spine fracture or soft tissue injury from falls, contact sports, vehicle collisions, aircraft ejection, and underbody blasts from roadway explosions (military injuries). Each of these injury scenarios elicits a different kinematic response of the spine as a result of load direction, magnitude, and duration. Updated from a popular earlier volume, this new compendium includes landmark papers from 1994 through 2013 that focus exclusively on lumbar injuries. It also features an introductory chapter, “Blunt Lumbar Trauma” that provides an overview of the anatomy of the lumbar region, injury, and injury mechanisms, as well as an extensive literature update. This edition is the third in a series of biomechanics compendia edited by Mr. Pike. Earlier editions covered injuries of the neck and head. For this volume, Mr. Pike and the advisory panel selected 15 of the best papers from a variety of sources including SAE International, IRCOBI, Stapp, NHTSA, ESV, and the Association for the Advancement of Automotive Medicine. The book will be helpful to those studying lumbar injury from a broad range of causes, including transportation, falls, sports, personal violence, and blast-related. Professionals from a variety of disciplines will find the book useful: biomechanics, accident reconstruction, medical and rehabilitation, insurance, legal, and law enforcement.




Valuing Health for Regulatory Cost-Effectiveness Analysis


Book Description

Promoting human health and safety by reducing exposures to risks and harms through regulatory interventions is among the most important responsibilities of the government. Such efforts encompass a wide array of activities in many different contexts: improving air and water quality; safeguarding the food supply; reducing the risk of injury on the job, in transportation, and from consumer products; and minimizing exposure to toxic chemicals. Estimating the magnitude of the expected health and longevity benefits and reductions in mortality, morbidity, and injury risks helps policy makers decide whether particular interventions merit the expected costs associated with achieving these benefits and inform their choices among alternative strategies. Valuing Health for Regulatory Cost-Effectiveness Analysis provides useful recommendations for how to measure health-related quality of- life impacts for diverse public health, safety, and environmental regulations. Public decision makers, regulatory analysts, scholars, and students in the field will find this an essential review text. It will become a standard reference for all government agencies and those consultants and contractors who support the work of regulatory programs.