Contexts of Learning Mathematics and Science


Book Description

This book is the result of research from over fifteen countries, asking which background and environmental factors influence achievement in mathematics and science. This research is based on data from the Third International Mathematics and Science Study (TIMSS), which was conducted under the auspices of the International Association for the Evaluation of Educational Achievement (IEA) in 1995 and 1998. In many countries researchers have started secondary analysis of the data in search for relationships between contextual factors and achievement. In these analyses two different approaches can be distinguished, which can be characterised by the metaphors of ‘fishing’ and ‘hunting’. In the ‘fishing’ approach, researchers begin with an open mind, considering all possible context variables as potentially influential. Applying analysis techniques such as regression analysis, Lisrel, PLS, HLM, and MLN, they then identify important factors within their countries or across a number of countries. In the ‘hunting’ approach, researchers hypothesise certain context variables and trace the effect of these variables on mathematics and/or science achievement.




Science Teachers' Learning


Book Description

Currently, many states are adopting the Next Generation Science Standards (NGSS) or are revising their own state standards in ways that reflect the NGSS. For students and schools, the implementation of any science standards rests with teachers. For those teachers, an evolving understanding about how best to teach science represents a significant transition in the way science is currently taught in most classrooms and it will require most science teachers to change how they teach. That change will require learning opportunities for teachers that reinforce and expand their knowledge of the major ideas and concepts in science, their familiarity with a range of instructional strategies, and the skills to implement those strategies in the classroom. Providing these kinds of learning opportunities in turn will require profound changes to current approaches to supporting teachers' learning across their careers, from their initial training to continuing professional development. A teacher's capability to improve students' scientific understanding is heavily influenced by the school and district in which they work, the community in which the school is located, and the larger professional communities to which they belong. Science Teachers' Learning provides guidance for schools and districts on how best to support teachers' learning and how to implement successful programs for professional development. This report makes actionable recommendations for science teachers' learning that take a broad view of what is known about science education, how and when teachers learn, and education policies that directly and indirectly shape what teachers are able to learn and teach. The challenge of developing the expertise teachers need to implement the NGSS presents an opportunity to rethink professional learning for science teachers. Science Teachers' Learning will be a valuable resource for classrooms, departments, schools, districts, and professional organizations as they move to new ways to teach science.




STEM Integration in K-12 Education


Book Description

STEM Integration in K-12 Education examines current efforts to connect the STEM disciplines in K-12 education. This report identifies and characterizes existing approaches to integrated STEM education, both in formal and after- and out-of-school settings. The report reviews the evidence for the impact of integrated approaches on various student outcomes, and it proposes a set of priority research questions to advance the understanding of integrated STEM education. STEM Integration in K-12 Education proposes a framework to provide a common perspective and vocabulary for researchers, practitioners, and others to identify, discuss, and investigate specific integrated STEM initiatives within the K-12 education system of the United States. STEM Integration in K-12 Education makes recommendations for designers of integrated STEM experiences, assessment developers, and researchers to design and document effective integrated STEM education. This report will help to further their work and improve the chances that some forms of integrated STEM education will make a positive difference in student learning and interest and other valued outcomes.




National Contexts for Mathematics and Science Education


Book Description

Beskrivelse af uddannelsessystemer samt læseplaner og lærebøger i matematik og naturvidenskabelige fag fra 38 lande, som deltager i TIMSS-undersøgelsen




Elementary Mathematics in Context


Book Description

These materials were developed, in part, by a grant from the federally-funded Mathematics and Science Partnership through the Center for STEM Education. Some of the activities were adapted from the National Council of Teachers of Mathematics Illuminations, the National Library of Virtual Manipulatives, Hands-On Math Projects with Real Applications by Judith A. Muschla and Gary R. Muschla, Learning Math with Calculators: Activities for Grades 3-8 by Len Sparrow and Paul Swan, and Mathematical Ideas by Charles D. Miller, Vern E. Heeren and John Hornsby. The following UNC Charlotte, Charlotte, North Carolina graduates contributed to the development of the work products: Anna Athanasopoulou, Stephen Chambers, Fabio Franco, Jen Krieger, Morgan Leith, Chris Muellenbach, Ashley Nagowski, Jamie Pursley, Brandy Reece, Lauren Selvey and Linda Xiong.




Mathematics and Science Education Around the World


Book Description

Amid current efforts to improve mathematics and science education in the United States, people often ask how these subjects are organized and taught in other countries. They hear repeatedly that other countries produce higher student achievement. Teachers and parents wonder about the answers to questions like these: Why do the children in Asian cultures seem to be so good at science and mathematics? How are biology and physics taught in the French curriculum? What are textbooks like elsewhere, and how much latitude do teachers have in the way they follow the texts? Do all students receive the same education, or are they grouped by ability or perceived educational promise? If students are grouped, how early is this done? What are tests like, and what are the consequences for students? Are other countries engaged in Standards-like reforms? Does anything like "standards" play a role in other countries? Questions such as these reflect more than a casual interest in other countries' educational practices. They grow out of an interest in identifying ways to improve mathematics and science education in the United States. The focus of this short report is on what the Third International Mathematics and Science Study (TIMSS), a major international investigation of curriculum, instruction, and learning in mathematics and science, will be able to contribute to understandings of mathematics and science education around the world as well as to current efforts to improve student learning, particularly in the United States.




Professional Standards for Teaching Mathematics


Book Description

Authorized Teacher resource for Mathematics, K-12 in Alberta. 1991-2001.




A Framework for K-12 Science Education


Book Description

Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.




Assessment Standards for School Mathematics


Book Description

This document was created because of the need for new assessment strategies and practices to be developed to enable teachers and others to assess students' performance in a manner that reflects the NCTM's reform vision for school mathematics. Instead of assuming that the purpose of assessment is to rank students on a particular trait, the new approach assumes that high public expectations can be set that every student can strive for and achieve, that different performances can and will meet agreed-on expectations, and that teachers can be fair and consistent judges of diverse student performances. The first sections of the document discuss six mathematics assessment standards: (1) The Mathematics Standard, (2) The Learning Standard, (3) The Equity Standard, (4) The Openness Standard, (5) The Inferences Standard, and (6) The Coherence Standard. The use of the assessment standards is then discussed in the context of different purposes such as monitoring students' progress, making instructional decisions, evaluating students' achievement, and evaluating programs. The next section discusses what should happen next with regard to mathematical assessment. The document concludes with a glossary and a selected assessment bibliography with 116 citations. Contains 28 references. (MKR)




Designing Mathematics or Science Curriculum Programs


Book Description

With the publication of the National Science Education Standards and the National Council of Teachers of Mathematics' Curriculum and Evaluation Standards for School Mathematics, a clear set of goals and guidelines for achieving literacy in mathematics and science was established. Designing Mathematics or Science Curriculum Programs has been developed to help state- and district-level education leaders create coherent, multi-year curriculum programs that provide students with opportunities to learn both mathematics and science in a connected and cumulative way throughout their schooling. Researchers have confirmed that as U.S. students move through the grade levels, they slip further and further behind students of other nations in mathematics and science achievement. Experts now believe that U.S. student performance is hindered by the lack of coherence in the mathematics and science curricula in many American schools. By structuring curriculum programs that capitalize on what students have already learned, the new concepts and processes that they can learn will be richer, more complex, and at a higher level. Designing Mathematics or Science Curriculum Programs outlines: Components of effective mathematics and science programs. Criteria by which these components can be judged. A process for developing curriculum that is structured, focused, and coherent. Perhaps most important, this book emphasizes the need for designing curricula across the entire 13-year span that our children spend in elementary and secondary school as a way to improve the quality of education. Ultimately, it will help state and district educators use national and state standards to design or re-build mathematics and science curriculum programs that develop new ideas and skills based on earlier onesâ€"from lesson to lesson, unit to unit, year to year. Anyone responsible for designing or influencing mathematics or science curriculum programs will find this guide valuable.