Natural Bioactive Products in Sustainable Agriculture


Book Description

This book discusses various aspects of bioactive natural products employed in the agrochemical and agriculture sectors. It covers the use of plants, microorganisms, and microbial metabolites as eco-friendly, cost-effective, and sustainable alternatives to chemicals in the field of agriculture. Written by active researchers and academics, the book highlights state-of-art products in the field, as well as the gaps, challenges, and obstacles associated with the use of plants, microbes and their products. Given its scope, it is a valuable resource for the scientific community and professionals in enterprises wanting insights into the latest developments and advances in the context of biological products, including their applications, traditional uses, modern practices, and strategies to harness their full potential.




Role of Plant Growth Promoting Microorganisms in Sustainable Agriculture and Nanotechnology


Book Description

Role of Plant Growth Promoting Microorganisms in Sustainable Agriculture and Nanotechnology explores PGPMs (actinomycetes, bacteria, fungi and cyanobacteria) and their multidimensional roles in agriculture, including their increasing applications in sustainable agriculture. In addition to their traditional understanding and applications in agriculture, PGPMs are increasingly known as a source of nano-particles production that are gaining significant interest in their ability to provide more economically, environmentally friendly and safe technologies to crop growers. The book considers new concepts and current developments in plant growth, thus promoting microorganisms research and evaluating its implications for sustainable productivity. Users will find this to be an invaluable resource for researchers in applied microbial biotechnology, soil science, nano-technology of microbial strains, and industry personnel in these areas. - Presents basic and applied aspects of sustainable agriculture, including nano-technology in sustainable agriculture - Identifies molecular tools/omics approaches for enhancing plant growth promoting microorganisms - Discusses plant growth promoting microorganisms in bioactive compounds production, and as a source of nano-particles




Biotechnological Production of Bioactive Compounds


Book Description

Biotechnological Production of Bioactive Compounds provides insights on the most recent innovations, trends, concerns, solutions and practical challenges encountered in the fields of enzyme technology and nanobiotechnology for the production of bioactive materials with extra health benefits. As nanobiotechnology has improved the bioactive extraction process significantly, many bioactives, including bioflavonoids, omega-3 fatty acids, biopigments and low calorie sugar substitutes are a pivotal part of the food industry. The book highlights the production of extra health benefits "bioactives'' from plants and microbes and explains how the extraction efficiency of bioactives molecules improves significantly with the recent advances in nanobiotechnology. Researchers in the fields of biochemical engineering, biotechnology, bioremediation, environmental sustainability and those in pharma industries will find the information in this book very helpful and illuminating. - Outlines technological advances in bioactives extraction - Covers bioflavonoids, biopigments, omega-3-fatty acids and low sugar substitutes - Explains the mechanisms of Green cargo (biogenic nanoparticles) for the delivery of bioactive molecules




Toward a Sustainable Agriculture Through Plant Biostimulants


Book Description

Over the past decade, interest in plant biostimulants has been on the rise, compelled by the growing interest of researchers, extension specialists, private industries, and farmers in integrating these products in the array of environmentally friendly tools to secure improved crop performance, nutrient efficiency, product quality, and yield stability. Plant biostimulants include diverse organic and inorganic substances, natural compounds, and/or beneficial microorganisms such as humic acids, protein hydrolysates, seaweed and plant extracts, silicon, endophytic fungi like mycorrhizal fungi, and plant growth-promoting rhizobacteria belonging to the genera Azospirillum, Azotobacter, and Rhizobium. Other substances (e.g., chitosan and other biopolymers and inorganic compounds) can have biostimulant properties, but their classification within the group of biostimulants is still under consideration. Plant biostimulants are usually applied to high-value crops, mainly greenhouse crops, fruit trees and vines, open-field crops, flowers, and ornamentals to sustainably increase yield and product quality. The global biostimulant market is currently estimated at about $2.0 billion and is expected to reach $3.0 billion by 2021 at an annual growth rate of 13%. A growing interest in plant biostimulants from industries and scientists was demonstrated by the high number of published peer-reviewed articles, conferences, workshops, and symposia in the past ten years. This book compiles several original research articles, technology reports, methods, opinions, perspectives, and invited reviews and mini reviews dissecting the biostimulatory action of these natural compounds and substances and beneficial microorganisms on crops grown under optimal and suboptimal growing conditions (e.g., salinity, drought, nutrient deficiency and toxicity, heavy metal contaminations, waterlogging, and adverse soil pH conditions). Also included are contributions dealing with the effect as well as the molecular and physiological mechanisms of plant biostimulants on nutrient efficiency, product quality, and modulation of the microbial population both quantitatively and qualitatively. In addition, identification and understanding of the optimal method, time, rate of application and phenological stage for improving plant performance and resilience to stress as well as the best combinations of plant species/cultivar × environment × management practices are also reported. We strongly believe that high standard reflected in this compilation on the principles and practices of plant biostimulants will foster knowledge transfer among scientific communities, industries, and agronomists, and will enable a better understanding of the mode of action and application procedures of biostimulants in different cropping systems.




Bioactive Compounds from Natural Sources, Second Edition


Book Description

The first edition of Bioactive Compounds from Natural Sources was published in a period of renewed attention to biologically active compounds of natural origin. This trend has continued and intensified—natural products are again under the spotlight, in particular for their possible pharmacological applications. Largely focusing on natural products as lead compounds in drug discovery, Bioactive Compounds from Natural Sources, Second Edition: Natural Products as Lead Compounds in Drug Discovery is actually a completely new volume containing surveys of selected recent advances in an interdisciplinary area covering chemistry of natural products, medicinal chemistry, biochemistry, and other related topics. Written by some of the most reputed scientists in the field, this second edition includes new chapters from authors who contributed to the first edition as well as many chapters compiled by new authors. Introducing the reader to strategies and methods in the search for bioactive natural products, this book covers topics including: Natural sources of bioactive compounds such as aquatic cyanobacteria, filamentous fungi, and tropical plants, The tremendous potentiality of metabolic engineering of natural products biosynthesis The contribution of emerging or developing technologies to the study of bioactive natural compounds, namely computational methods and circular dichroism The potential of natural or natural-derived compounds for specific therapeutic applications: treatment of viral diseases, regulation of hypoxia-inducible factor, antimalarials, modulation of angiogenesis, and antitumor and wound-healing activity Selected examples of natural product families and related synthetic analogues, namely polyphenols and campthotecins Compiled for researchers and Ph.D. students working in interdisciplinary fields, this book will also be appreciated by readers without a background in chemistry interested in bioactive natural products, their biological and pharmacological properties, and their possible use as chemopreventive or chemotherapeutic agents. Conversely, the biological and pharmacological data and methods are accessible by chemists.




Molecular Aspects of Plant Beneficial Microbes in Agriculture


Book Description

Molecular Aspects of Plant Beneficial Microbes in Agriculture explores their diverse interactions, including the pathogenic and symbiotic relationship which leads to either a decrease or increase in crop productivity. Focusing on these environmentally-friendly approaches, the book explores their potential in changing climatic conditions. It presents the exploration and regulation of beneficial microbes in offering sustainable and alternative solutions to the use of chemicals in agriculture. The beneficial microbes presented here are capable of contributing to nutrient balance, growth regulators, suppressing pathogens, orchestrating immune response and improving crop performance. The book also offers insights into the advancements in DNA technology and bioinformatic approaches which have provided in-depth knowledge about the molecular arsenal involved in mineral uptake, nitrogen fixation, growth promotion and biocontrol attributes.




Bioformulations: for Sustainable Agriculture


Book Description

More than a century has passed since the first bioformulations were introduced to the market. But there is still much to be done, explored and developed. Though bioformulations offer green alternatives and are important for sustainable agriculture, they make up only a small fraction of the total additions used to enhance crop yields or protect them from pests. There is a great need to develop bioformulations that can promote confidence among end users; accordingly, it is imperative that bioformulations to replace chemicals be reliable and overcome the shortcomings of the past. Bioformulations: for Sustainable Agriculture discusses all the issues related to the current limitations and future development of bioformulations. It examines in detail those bioformulations that include biofertilizers and biopesticides (also commonly known as bioinoculants), presenting a global picture of their development. Further chapters address diverse microbes that are already being or could be used as bioformulations. The book also discusses the techniques, tools and other additions required to establish bioformulations as trustworthy and global solutions. It assesses the types of bioformulations currently available on the market, while also considering the future roles of bioformulations, including the reclamation of marginal and polluted soils. Further, it discusses the current legislation and much-needed amendments. Overall the book provides a comprehensive outlook on the status quo of bioformulations and the future approaches needed to improve them and achieve sustainable agriculture and food security without sacrificing the quality of soils. This will be extremely important in offering chemical-free foods and a better future for generations to come.




Bioresources Technology in Sustainable Agriculture


Book Description

This book focuses on cutting-edge advances and applications in tropical agriculture and bioresources. It outlines some of the newest advances, basic tools, and the applications of novel approaches to improve agricultural practices and utilization of bioresources for the enhancement of human life. Highlights include a thorough discussion on various aspects of agricultural modernization through technological advances in information technology, efficient utilization of under-exploited natural bioresources, new chemical approaches for the generation of novel biochemicals, and the applications of forensic and genetics approaches for bioresource conservation.




Current Trends in Microbial Biotechnology for Sustainable Agriculture


Book Description

Microbial biotechnology is an emerging field with applications in a broad range of sectors involving food security, human nutrition, plant protection and overall basic research in the agricultural sciences. The environment has been sustaining the burden of mankind from time immemorial, and our indiscriminate use of its resources has led to the degradation of the climate, loss of soil fertility, and the need for sustainable strategies. The major focus in the coming decades will be on achieving a green and clean environment by utilizing soil and plant-associated beneficial microbial communities. Plant-microbe interactions include the association of microbes with plant systems: epiphytic, endophytic and rhizospheric. The microbes associated with plant ecosystems play an important role in plant growth, development, and soil health. Moreover, soil and plant microbiomes help to promote plant growth, either directly or indirectly by means of plant growth-promoting mechanisms, e.g. the release of plant growth regulators; solubilization of phosphorus, potassium and zinc; biological nitrogen fixation; or by producing siderophores, ammonia, HCN and other secondary metabolites. These beneficial microbial communities represent a novel and promising solution for agro-environmental sustainability by providing biofertilizers, bioprotectants, and biostimulants, in addition to mitigating various types of abiotic stress in plants. This book focuses on plant-microbe interactions; the biodiversity of soil and plant microbiomes; and their role in plant growth and soil health. Accordingly, it will be immensely useful to readers working in the biological sciences, especially microbiologists, biochemists and microbial biotechnologists.




Advances in Plant Microbiome and Sustainable Agriculture


Book Description

Microbes are ubiquitous in nature, and plant-microbe interactions are a key strategy for colonizing diverse habitats. The plant microbiome (epiphytic, endophytic and rhizospheric) plays an important role in plant growth and development and soil health. Further, rhizospheric soil is a valuable natural resource, hosting hotspots of microbes, and is vital in the maintenance of global nutrient balance and ecosystem function. The term endophytic microbes refers to those microorganisms that colonize the interior the plants. The phyllosphere is a common niche for synergism between microbes and plants and includes the leaf surface. The diverse group of microbes are key components of soil-plant systems, and where they are engaged in an extensive network of interactions in the rhizosphere/endophytic/phyllospheric they have emerged as an important and promising tool for sustainable agriculture. Plant microbiomes help to directly or indirectly promote plant growth using plant growth promoting attributes, and could potentially be used as biofertilizers/bioinoculants in place of chemical fertilizers. This book allows readers to gain an understanding of microbial diversity associated with plant systems and their role in plant growth, and soil health. Offering an overview of the state of the art in plant microbiomes and their potential biotechnological applications in agriculture and allied sectors, it is a valuable resource for scientists, researchers and students in the field of microbiology, biotechnology, agriculture, molecular biology, environmental biology and related subjects.