Natural Genetic Engineering and Natural Genome Editing, Volume 1178


Book Description

"This volume presents manuscripts stemming from the conference "Natural Genetic Engineering and Natural Genome Editing" held on July 3-6, 2008 ... Salzburg, Austria"-- page V.




Tomorrow's Table


Book Description

By the year 2050, Earth's population will double. If we continue with current farming practices, vast amounts of wilderness will be lost, millions of birds and billions of insects will die, and the public will lose billions of dollars as a consequence of environmental degradation. Clearly, there must be a better way to meet the need for increased food production. Written as part memoir, part instruction, and part contemplation, Tomorrow's Table argues that a judicious blend of two important strands of agriculture--genetic engineering and organic farming--is key to helping feed the world's growing population in an ecologically balanced manner. Pamela Ronald, a geneticist, and her husband, Raoul Adamchak, an organic farmer, take the reader inside their lives for roughly a year, allowing us to look over their shoulders so that we can see what geneticists and organic farmers actually do. The reader sees the problems that farmers face, trying to provide larger yields without resorting to expensive or environmentally hazardous chemicals, a problem that will loom larger and larger as the century progresses. They learn how organic farmers and geneticists address these problems. This book is for consumers, farmers, and policy decision makers who want to make food choices and policy that will support ecologically responsible farming practices. It is also for anyone who wants accurate information about organic farming, genetic engineering, and their potential impacts on human health and the environment.




Insect Molecular Genetics


Book Description

Insect Molecular Genetics




Genome Engineering for Crop Improvement


Book Description

This book serves the teachers, researchers and the students as a handy and concise reference as well as guidebook while designing and planning for use of the advanced technologies for crop improvement. The content of the book is designed to cover the latest genome engineering techniques for crop improvement. The conventional breeding has got its limitations such as non-availability of desired genes within the genepool. In many cases, breeding has been highly used and it has nearly reached its highest limit so far as the productivity and production of crops are concerned. However, with increasing need of food and decreasing resources, including water, land, labour, etc., to feed the growing population, the alternative available ways of increasing crop productivity need to be explored and exploited. Genome engineering has a wide scope that includes technologies such as genetic engineering and transgenesis, RNA technologies, CRISPR, cisgenics and subgenics for better productivity and more efficient biotic and abiotic stress management. Therefore, the book is planned to enlighten the readers with the advanced technologies with examples and case studies, whenever possible. Efforts will be made to emphasize on general efforts on various major food crops; however, it would also be made clear that such efforts could be taken as proofs of concepts and that this could be extrapolated keeping the demand in mind.




RNA, the Epicenter of Genetic Information


Book Description

The origin story and emergence of molecular biology is muddled. The early triumphs in bacterial genetics and the complexity of animal and plant genomes complicate an intricate history. This book documents the many advances, as well as the prejudices and founder fallacies. It highlights the premature relegation of RNA to simply an intermediate between gene and protein, the underestimation of the amount of information required to program the development of multicellular organisms, and the dawning realization that RNA is the cornerstone of cell biology, development, brain function and probably evolution itself. Key personalities, their hubris as well as prescient predictions are richly illustrated with quotes, archival material, photographs, diagrams and references to bring the people, ideas and discoveries to life, from the conceptual cradles of molecular biology to the current revolution in the understanding of genetic information. Key Features Documents the confused early history of DNA, RNA and proteins - a transformative history of molecular biology like no other. Integrates the influences of biochemistry and genetics on the landscape of molecular biology. Chronicles the important discoveries, preconceptions and misconceptions that retarded or misdirected progress. Highlights major pioneers and contributors to molecular biology, with a focus on RNA and noncoding DNA. Summarizes the mounting evidence for the central roles of non-protein-coding RNA in cell and developmental biology. Provides a thought-provoking retrospective and forward-looking perspective for advanced students and professional researchers. The Open Access version of this book, available at www.taylorfrancis.com, has been made available under a Creative Commons Attribution-Non Commercial-No Derivatives 4.0 license.




Adaption of Microbial Life to Environmental Extremes


Book Description

Once considered exceptional rarities, extremophiles have become attractive objects for basic and applied research ranging from nanotechnology to biodiversity to the origins of life and even to the search for extraterrestrial life. Several novel aspects of extremophiles are covered in this book; the focus is firstly on unusual and less explored ecosystems such as marine hypersaline deeps, extreme cold, desert sands, and man-made clean rooms for spacecraft assembly. Secondly, the increasingly complex field of applications from extremophile research is treated and examples such as novel psychrophilic enzymes, compounds from halophiles, and detection strategies for potential extraterrestrial life forms are presented.




Preparing for Future Products of Biotechnology


Book Description

Between 1973 and 2016, the ways to manipulate DNA to endow new characteristics in an organism (that is, biotechnology) have advanced, enabling the development of products that were not previously possible. What will the likely future products of biotechnology be over the next 5â€"10 years? What scientific capabilities, tools, and/or expertise may be needed by the regulatory agencies to ensure they make efficient and sound evaluations of the likely future products of biotechnology? Preparing for Future Products of Biotechnology analyzes the future landscape of biotechnology products and seeks to inform forthcoming policy making. This report identifies potential new risks and frameworks for risk assessment and areas in which the risks or lack of risks relating to the products of biotechnology are well understood.




Evolutionary Biology: Biodiversification from Genotype to Phenotype


Book Description

This book presents 20 selected contributions to the 18th Evolutionary Biology Meeting, which took place in September 2014 in Marseille. They are grouped under the following major themes: · Genotype to Phenotype · Genetic Mechanisms of Diversification · Evolutionary Mechanisms · Speciation and Biodiversity The aims of these annual meetings in Marseille are to bring together leading evolutionary biologists and other scientists who employ evolutionary biology concepts, e.g. for medical research, and to promote the exchange of ideas and encourage interdisciplinary collaborations. Offering an up-to-date overview of recent advances in the field of evolutionary biology, this book represents an invaluable source of information for scientists, teachers and advanced students.




Genopsych: A Coinage in the Foundry of Biology


Book Description

Enormous advances in science led to compartmentalization of knowledge into specializations and super specializations so much so that a specialist in one area refuses to look into the other area. Interdisciplinary research is mainly in the applied areas. On the other hand some scientists are enthusiastically exploring less traveled paths. Plant neurobiology and Plant intelligence are the areas that are now being rediscovered. Consciousness is yet another field that is making its way into science from spiritual philosophies. How many of us know that the subject of Human Thermodynamics is being explored though by a small group as of now? The area of Epigenetics is expanding. What caused Human evolution? Can selected random [generally explained as accidental] causes result into the formation of a highly ordered / programmed systems as complex as Human beings in the absence of any drive? Is not natural selection a control/filtering mechanism? What is the meaning of “evolutionary forces” or “selection pressure”? Are the concepts of Statistical Process Control, that deal with the random/nonrandom variations, applicable to the process of evolution by natural selection? What causes the evolution of organized societies? Is poverty less, civil human society viable? These are some of the questions that demand interaction among and across the disciplines, which is often delimited by the boundaries and semantics of disciplines. Humanity, after reaping the harvest of Integrated Technologies, is ushering into an era of Converging Technologies which would necessitate communication bridges between Science and Philosophy, Biology, Physics, Agriculture, Medical Sciences, Engineering and Informatics and other diverse areas of knowledge; and that too with escalated openness. In order to encourage such transdisciplinary interactions, forums were launched at www.network.nature.com and http://knol.google. com/k/arvind-kumar-purohit/ and after post publication open review of tangible ideas the works have been published as Transcience Transactions.




Interactive Granular Computations in Networks and Systems Engineering: A Practical Perspective


Book Description

The book outlines selected projects conducted under the supervision of the author. Moreover, it discusses significant relations between Interactive Granular Computing (IGrC) and numerous dynamically developing scientific domains worldwide, along with features characteristic of the author’s approach to IGrC. The results presented are a continuation and elaboration of various aspects of Wisdom Technology, initiated and developed in cooperation with Professor Andrzej Skowron. Based on the empirical findings from these projects, the author explores the following areas: (a) understanding the causes of the theory and practice gap problem (TPGP) in complex systems engineering (CSE); (b) generalizing computing models of complex adaptive systems (CAS) (in particular, natural computing models) by constructing an interactive granular computing (IGrC) model of networks of interrelated interacting complex granules (c-granules), belonging to a single agent and/or to a group of agents; (c) developing methodologies based on the IGrC model to minimize the negative consequences of the TPGP. The book introduces approaches to the above issues, using the proposed IGrC model. In particular, the IGrC model refers to the key mechanisms used to control the processes related to the implementation of CSE projects. One of the main aims was to develop a mechanism of IGrC control over computations that model a project’s implementation processes to maximize the chances of its success, while at the same time minimizing the emerging risks. In this regard, the IGrC control is usually performed by means of properly selected and enforced (among project participants) project principles. These principles constitute examples of c-granules, expressed by complex vague concepts (represented by c-granules too). The c-granules evolve with time (in particular, the meaning of the concepts is also subject of change). This methodology is illustrated using project principles applied by the author during the implementation of the POLTAX, AlgoTradix, Merix, and Excavio projects outlined in the book.