Disaggregation


Book Description

This volume is intended to expand the dialogue and interest among both practitioners and academicians in a problem area worthy of attention by all. The concept of disaggregation admits to our current inability to solve many types of interrelated hierarchical problems simultaneously. It offers instead a sequential, iterative process as a workable and necessary procedure. The papers in this volume are selected from those presented at a Disaggregation Conference held in March, 1977 at The Ohio State University. We heartily applaud all those who participated in the conference and particularly appreci ate the cooperation of those authors whose work is published in this collection. Part A contains four papers which define the various dimensions of disaggregation. The paper by Martin Starr, which was the text of his luncheon address at the conference, provides several interesting perspectives to the problem. Although disaggregation suggests tear ing apart, as Professor Starr illustrates with his butterfly example, it also suggests a putting together or a synthesis which recognizes interrelationships and dependencies. The next paper by Lee Kra jewski and Larry Ritzman offers a general model of disaggregation for both the manufacturing and service sectors. After reading the papers in this section, as well as the papers in subsequent sections, you will identify other dimensions to hierarchical decision making which go beyond this generalized model.




Goal Programming: Methodology and Applications


Book Description

Goal Programming Applications in Accounting 74 Goal Programming Applications in Agriculture 76 Goal Programming Applications in Economics 78 Goal Programming Applications in Engineering 79 Goal Programming Applications in Finance 80 Goal Programming Applications in Government 83 Goal Programming Applications in an International Context 88 Goal Programming Applications in Management 90 Goal Programming Applications in Marketing 97 Summary 98 CHAPTER 5. FUTURE TRENDS IN GOAL PROORAMMING 101 GP is Positioned for Growth 101 Shifting the Life Cycle of GP Research to Growth 103 Summary 107 Reference 108 APPENDIX A TEXTBOOKS, READINGS BOOKS AND MONOORAPHS ON GOAL PROORAMMING 109 APPENDIX B. JOURNAL RESEARCH PUBLICATIONS ON GOAL PROORAMMING 113 INDEX 213 viii LIST OF FIGURES Figure 1-1. Summary Relationship of GP with MS/OR and MCDM Figure 1-2. Frequency Distribution for GP Journal Publications Figure 1-3. Life Cycle ofGP Research Figure 2-1. Set of GP Efficient Solutions Figure 5-1. Life Cycle of GP Research ix LIST OF TABLES Table 1-1. MS/OR Topics and Their Related GP Topics Table 1-2. MCDM Subareas and Their Related GP Topics Table 1-3. Frequency Listing ofGP Journal Publications and Book Titles Table 2-1. Solutions for a Dominated GP Problem Table 2-2. Conversion ofLP Constraints to Goal Constraints Table 2-3. GP Citations on Dominance, Inferiority and Inefficiency Table 2-4. GP Citations on Relative Weighting, Prioritization and Incommensurability Table 2-5. MS/OR Topics and Their Related GP Topics Table 3-1. Citations on WeightedlPreemptive GP Methodology Table 3-2. Citations on Pure/Mixed Integer GP Methodology Table 3-3.




Production Scheduling


Book Description

Generally speaking, scheduling is the procedure of mapping a set of tasks or jobs (studied objects) to a set of target resources efficiently. More specifically, as a part of a larger planning and scheduling process, production scheduling is essential for the proper functioning of a manufacturing enterprise. This book presents ten chapters divided into five sections. Section 1 discusses rescheduling strategies, policies, and methods for production scheduling. Section 2 presents two chapters about flow shop scheduling. Section 3 describes heuristic and metaheuristic methods for treating the scheduling problem in an efficient manner. In addition, two test cases are presented in Section 4. The first uses simulation, while the second shows a real implementation of a production scheduling system. Finally, Section 5 presents some modeling strategies for building production scheduling systems. This book will be of interest to those working in the decision-making branches of production, in various operational research areas, as well as computational methods design. People from a diverse background ranging from academia and research to those working in industry, can take advantage of this volume.




Mathematical Methods of Operations Research


Book Description

The first graduate-level text devoted to the subject, this classic offers a concise history and overview of methods as well as an excellent exposition of the mathematical foundations underlying classical operations research procedures. It begins with a review of historical, scientific, and mathematical aspects; examples and ideas related to classical methods of forming models introduce discussions of optimization, game theory, applications of probability, and queuing theory. Carefully selected exercises illustrate important and useful ideas. This text is an ideal introduction for students to the basic mathematics of operations research as well as a valuable source of references to early literature on operations research. 1959 edition.







Nondifferentiable and Two-Level Mathematical Programming


Book Description

The analysis and design of engineering and industrial systems has come to rely heavily on the use of optimization techniques. The theory developed over the last 40 years, coupled with an increasing number of powerful computational procedures, has made it possible to routinely solve problems arising in such diverse fields as aircraft design, material flow, curve fitting, capital expansion, and oil refining just to name a few. Mathematical programming plays a central role in each of these areas and can be considered the primary tool for systems optimization. Limits have been placed on the types of problems that can be solved, though, by the difficulty of handling functions that are not everywhere differentiable. To deal with real applications, it is often necessary to be able to optimize functions that while continuous are not differentiable in the classical sense. As the title of the book indicates, our chief concern is with (i) nondifferentiable mathematical programs, and (ii) two-level optimization problems. In the first half of the book, we study basic theory for general smooth and nonsmooth functions of many variables. After providing some background, we extend traditional (differentiable) nonlinear programming to the nondifferentiable case. The term used for the resultant problem is nondifferentiable mathematical programming. The major focus is on the derivation of optimality conditions for general nondifferentiable nonlinear programs. We introduce the concept of the generalized gradient and derive Kuhn-Tucker-type optimality conditions for the corresponding formulations.




Practical Applications of Fuzzy Technologies


Book Description

Covers applications of fuzzy technology, in sections on engineering and natural sciences, medicine, management, and behavioral, cognitive, and social sciences, with a final section on tools. Specific subjects include fuzzy control in the process industry, ecological modeling and data analysis, fuzzy logic and possibility theory in biomedical engineering, fuzzy sets methodologies in actuarial science, fuzzy set theory and applications in psychology, fuzzy sets in human factors and ergonomics, and software methodology and design tools. Further topics include strategic planning, image processing in medicine, and fuzzy and crisp approaches to production planning and scheduling.




Quadratic Assignment and Related Problems


Book Description

The methods described here include eigenvalue estimates and reduction techniques for lower bounds, parallelization, genetic algorithms, polyhedral approaches, greedy and adaptive search algorithms.