Navigating the Manufacturing Process and Ensuring the Quality of Regenerative Medicine Therapies


Book Description

On June 26, 2017, the Forum on Regenerative Medicine hosted a public workshop in Washington, DC, titled Navigating the Manufacturing Process and Ensuring the Quality of Regenerative Medicine Therapies in order to examine and discuss the challenges, opportunities, and best practices associated with defining and measuring the quality of cell and tissue products and raw materials in the research and manufacturing of regenerative medicine therapies. The goal of the workshop was to learn from existing examples of the manufacturing of early-generation regenerative medicine products and to address how progress could be made in identifying and measuring critical quality attributes. The workshop also addressed the challenges of designing and adhering to standards as a way of helping those who are working to scale up processes and techniques from a research laboratory to the manufacturing environment. This publication summarizes the presentations and discussions from the workshop.




Applying Systems Thinking to Regenerative Medicine


Book Description

Regenerative medicine products, which are intended to repair or replace damaged cells or tissues in the body, include a range of therapeutic approaches such as cell- and gene-based therapies, engineered tissues, and non-biologic constructs. The current approach to characterizing the quality of a regenerative medicine product and the manufacturing process often involves measuring as many endpoints as possible, but this approach has proved to be inadequate and unsustainable. The Forum on Regenerative Medicine of the National Academies of Sciences, Engineering, and Medicine convened experts across disciplines for a 2-day virtual public workshop to explore systems thinking approaches and how they may be applied to support the identification of relevant quality attributes that can help in the optimization of manufacturing and streamline regulatory processes for regenerative medicine. A broad array of stakeholders, including data scientists, physical scientists, industry researchers, regulatory officials, clinicians, and patient representatives, discussed new advances in data acquisition, data analysis and theoretical frameworks, and how systems approaches can be applied to the development of regenerative medicine products that can address the unmet needs of patients. This publication summarizes the presentation and discussion of the workshop.




Exploring Sources of Variability Related to the Clinical Translation of Regenerative Engineering Products


Book Description

The emerging multidisciplinary field of regenerative engineering is devoted to the repair, regeneration, and replacement of damaged tissues or organs in the body. To accomplish this it uses a combination of principles and technologies from disciplines such as advanced materials science, developmental and stem cell biology, immunology, physics, and clinical translation. The term "regenerative engineering" reflects a new understanding of the use of tissue engineering for regeneration and also the growing number of research and product development efforts that incorporate elements from a variety of fields. Because regenerative engineered therapies rely on live cells and scaffolds, there are inherent challenges in quality control arising from variability in source and final products. Furthermore, each patient recipient, tissue donor, and product application is unique, meaning that the field faces complexities in the development of safe and effective new products and therapies which are not faced by developers of more conventional therapies. Understanding the many sources of variability can help reduce this variability and ensure consistent results. The Forum on Regenerative Medicine hosted a public workshop on October 18, 2018, in Washington, DC, to explore the various factors that must be taken into account in order to develop successful regenerative engineering products. Invited speakers and participants discussed factors and sources of variability in the development and clinical application of regenerative engineering products, characteristics of high-quality products, and how different clinical needs, models, and contexts can inform the development of a product to improve patient outcomes. This publication summarizes the presentation and discussion of the workshop.




Regenerative Medicine


Book Description

The field of regenerative medicine has developed rapidly over the past 20 years with the advent of molecular and cellular techniques. This textbook, Regenerative Medicine: From Protocol to Patient, aims to explain the scientific knowledge and emerging technology as well as the clinical application in different organ systems and diseases. International leading experts from four continents describe the latest scientific and clinical knowledge of the field of regenerative medicine. The process of translating science of laboratory protocols into therapies is explained in sections on regulatory, ethical and industrial issues. This textbook is organized into five parts: (I) Biology of Tissue Regeneration, (II) Stem Cell Science and Technology, (III) Tissue Engineering, Biomaterials and Nanotechnology, (IV) Regenerative Therapies and (V) Regulation and Ethics. The textbook aims to give the student, the researcher, the health care professional, the physician and the patient a complete survey on the current scientific basis, therapeutical protocols, clinical translation and practiced therapies in regenerative medicine.




Regenerative Medicine


Book Description

Regenerative Medicine is a fastly emerging interdisciplinary field of research and clinical therapies on the repair, replacement or regeneration of cells, tissues or organs in congenital or acquired disease. This new field of research and clinical development focussing on stem cell science and regenerative biology is just starting to be the most fascinating and controversial medical development at the dawn of the 21st century. Viewing the great expectations to restructure and regenerate tissue, organs or organisms the current attempts of scientist and physicians are still in an early phase of development. This new textbook on “Regenerative Medicine – from protocol to patient” is aiming to explain the scientific knowledge and emerging technology as well as the clinical application in different organ systems and diseases. The international leading experts from four continents describe the latest scientific and clinical knowledge of the field of “Regenerative Medicine”. The process of translating science of laboratory protocols into therapies is explained in sections on basic science, clinical translation, regulatory, ethical and industrial issues. The textbook is aiming to give the student, the researcher, the health care professional, the physician, and the patient a complete survey on the current scientific basis, therapeutical protocols, clinical translation and practised therapies in Regenerative Medicine.




Exploring the State of the Science in the Field of Regenerative Medicine


Book Description

Regenerative medicine holds the potential to create living, functional cells and tissues that can be used to repair or replace those that have suffered potentially irreparable damage due to disease, age, traumatic injury, or genetic and congenital defects. The field of regenerative medicine is broad and includes research and development components of gene and cell therapies, tissue engineering, and non-biologic constructs. Although regenerative medicine has the potential to improve health and deliver economic benefits, this relatively new field faces challenges to developing policies and procedures to support the development of novel therapies are both safe and effective. In October 2016, the National Academies of Sciences, Engineering, and Medicine hosted a public workshop with the goal of developing a broad understanding of the opportunities and challenges associated with regenerative medicine cellular therapies and related technologies. Participants explored the state of the science of cell-based regenerative therapies within the larger context of patient care and policy. This publication summarizes the presentations and discussions from the workshop.




Potency Assays for Advanced Stem Cell Therapy Medicinal Products


Book Description

This volume of the Springer book series Advances in Experimental Medicine and Biology covers potency assays, one of the most complex yet fundamental evaluations that critically influence stem cell regenerative medicine. Developing potency assays for cell-based medicinal products comes with numerous challenges due to the highly specialised nature of the application and purpose. This book provides the reader with the knowledge necessary to understand issues governing the successful development of potency assays, highlighting an international outlook of how the various challenges raised are being managed. Stakeholders concerned with potency assay development range from patient and clinician to contract research organisations, small and medium enterprise, regulatory authorities and even politicians. The value of potency assays is poised to increase given the inevitable watershed as early-stage clinical trials addressing safety progress to trials testing efficacy. Contributors from clinical, academic, industrial and regulatory sectors establish a broad point of view for guidance and timely debate. Potency assays require extensive collaboration across disciplines and sectors, as well as compromise and the authors aim to constructively address the many key aspects involved. Potency assays provide a quantitative measure of the biological activity of advanced therapy medicinal products (ATMPs) and thus are required for their market authorization. As the pace of ATMP development accelerates, the need to develop specific, accurate, and robust potency assays for each product is also accelerating. The volume Potency Assays for Stem Cell Advanced Therapy Medicinal Products presents a broad outlook on the development, quality attributes, and implementation of potency assays for ATMPs. The first few chapters introduce a nuanced historical perspective on the science of potency assay development, describe specific quality attributes of an idealized potency assay, indicate pitfalls associated with developing such assays for ATMPs, and review guidance recommended by regulatory authorities on assay suitability for product approval. Subsequent chapters highlight efforts to develop potency assays for specific ATMPs, including skeletal stem cells, mesenchymal stromal cells, extracellular vesicles, CAR T-cells, and discuss emerging technologies/platforms for potency assay design. The volume concludes with a chapter reviewing potency assays used for the release of commercial ATMP products, which amalgamates information contained in previous chapters. Overall, the knowledge contributed from leading authorities in both academia and industry is an ideal resource for technicians, scientists, clinicians, process engineers, and regulators working with ATMPs. —Donald G. Phinney, PhD Professor, Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology




Regulatory Aspects of Gene Therapy and Cell Therapy Products


Book Description

This book discusses the different regulatory pathways for gene therapy (GT) and cell therapy (CT) medicinal products implemented by national and international bodies throughout the world (e.g. North and South America, Europe, and Asia). Each chapter, authored by experts from various regulatory bodies throughout the international community, walks the reader through the applications of nonclinical research to translational clinical research to licensure for these innovative products. More specifically, each chapter offers insights into fundamental considerations that are essential for developers of CT and GT products, in the areas of product manufacturing, pharmacology and toxicology, and clinical trial design, as well as pertinent "must-know" guidelines and regulations. Regulatory Aspects of Gene Therapy and Cell Therapy Products: A Global Perspective is part of the American Society of Gene and Cell Therapy sub-series of the highly successful Advances in Experimental Medicine and Biology series. It is essential reading for graduate students, clinicians, and researchers interested in gene and cell therapy and the regulation of pharmaceuticals.




Cell and Gene Therapies


Book Description

In this book, experts in the field express their well-reasoned opinions on a range of complex, clinically relevant issues across the full spectrum of cell and gene therapies with the aim of providing trainee and practicing hematologists, including hematopoietic transplant physicians, with information that is relevant to clinical practice and ongoing research. Each chapter focuses on a particular topic, and the concise text is supported by numerous working tables, algorithms, and figures. Whenever appropriate, guidance is provided regarding the availability of potentially high-impact clinical trials. The rapid evolution of cell and gene therapies is giving rise to numerous controversies that need to be carefully addressed. In meeting this challenge, this book will appeal to all residents, fellows, and faculty members responsible for the care of hematopoietic cell transplant patients. It will also offer a robust, engaging tool to aid vital activities in the daily work of every hematology and oncology trainee.




Preparing for Future Products of Biotechnology


Book Description

Between 1973 and 2016, the ways to manipulate DNA to endow new characteristics in an organism (that is, biotechnology) have advanced, enabling the development of products that were not previously possible. What will the likely future products of biotechnology be over the next 5â€"10 years? What scientific capabilities, tools, and/or expertise may be needed by the regulatory agencies to ensure they make efficient and sound evaluations of the likely future products of biotechnology? Preparing for Future Products of Biotechnology analyzes the future landscape of biotechnology products and seeks to inform forthcoming policy making. This report identifies potential new risks and frameworks for risk assessment and areas in which the risks or lack of risks relating to the products of biotechnology are well understood.