Navigation Signal Processing for GNSS Software Receivers


Book Description

The advancement of software radio technology has provided an opportunity for the design of performance-enhanced GNSS receivers that are more flexible and easier to develop than their FPGA or ASIC based counterparts. Filling a gap in the current literature on the subject, this highly practical resource offers you an in-depth understanding of navigation signal detection and estimation algorithms and their implementation in a software radio. This unique book focuses on high precision applications for GNSS signals and an innovative RTK receiver concept based on difference correlators. You learn how to develop navigation receivers for top performance using basic algorithms, like correlation and tracking, which can be understood on an intuitive level. Additionally, the book provides you with a theoretical framework for signal estimation and detection that gives you the knowledge you need to make performance assessments without building a receiver. The theoretical treatment also gives you hints for choosing optimal algorithms for your projects in the field.




A Software-Defined GPS and Galileo Receiver


Book Description

This book explore the use of new technologies in the area of satellite navigation receivers. In order to construct a reconfigurable receiver with a wide range of applications, the authors discuss receiver architecture based on software-defined radio techniques. The presentation unfolds in a user-friendly style and goes from the basics to cutting-edge research. The book is aimed at applied mathematicians, electrical engineers, geodesists, and graduate students. It may be used as a textbook in various GPS technology and signal processing courses, or as a self-study reference for anyone working with satellite navigation receivers.




GNSS Receivers for Weak Signals


Book Description

Many important GPS applications require a GNSS (global navigation satellite system) receiver with the ability to work with weak signals. This book addresses the critical issue, introducing new, efficient GNSS receiver algorithms designed for weak signals and various dynamic conditions.




Digital Satellite Navigation and Geophysics


Book Description

Bridge the gap between theoretical education and practical work experience with this hands-on guide to GNSS, which features: • A clear, practical presentation of GNSS theory, with emphasis on GPS and GLONASS • All the essential theory behind software receivers and signal simulators • Key applications in navigation and geophysics, including INS aiding, scintillation monitoring, earthquake studies and more • Physical explanations of various important phenomena, including the similarity of code delay and phase advance of GNSS signals, and negative cross-correlation between scintillation intensity and phase variations. Whether you are a practising engineer, a researcher or a student, you will gain a wealth of insights from the authors' twenty-five years of experience. You can explore numerous practical examples and case studies and get hands-on user experience with a bundled real-time software receiver, signal simulator and a set of signal data, enabling you to create your own GNSS lab for research or study.




Springer Handbook of Global Navigation Satellite Systems


Book Description

This Handbook presents a complete and rigorous overview of the fundamentals, methods and applications of the multidisciplinary field of Global Navigation Satellite Systems (GNSS), providing an exhaustive, one-stop reference work and a state-of-the-art description of GNSS as a key technology for science and society at large. All global and regional satellite navigation systems, both those currently in operation and those under development (GPS, GLONASS, Galileo, BeiDou, QZSS, IRNSS/NAVIC, SBAS), are examined in detail. The functional principles of receivers and antennas, as well as the advanced algorithms and models for GNSS parameter estimation, are rigorously discussed. The book covers the broad and diverse range of land, marine, air and space applications, from everyday GNSS to high-precision scientific applications and provides detailed descriptions of the most widely used GNSS format standards, covering receiver formats as well as IGS product and meta-data formats. The full coverage of the field of GNSS is presented in seven parts, from its fundamentals, through the treatment of global and regional navigation satellite systems, of receivers and antennas, and of algorithms and models, up to the broad and diverse range of applications in the areas of positioning and navigation, surveying, geodesy and geodynamics, and remote sensing and timing. Each chapter is written by international experts and amply illustrated with figures and photographs, making the book an invaluable resource for scientists, engineers, students and institutions alike.




BDS/GPS Dual-Mode Software Receiver


Book Description

This book introduces readers to the algorithm of Compass & GPS dual-system software receivers, and to the software implementation. It provides detailed descriptions of key theories in the fields of signal processing, communication, control, and signal estimation. The book is based on the author’s extensive experience in GNSS receiver design. The MATLAB script developed for this book demonstrates most of the key theories and equips the reader with excellent tools for practicing them.




Engineering Satellite-Based Navigation and Timing


Book Description

This book describes the design and performance analysis of satnav systems, signals, and receivers, with a general approach that applies to all satnav systems and signals in use or under development. It also provides succinct descriptions and comparisons of each satnav system. Clearly structured, and comprehensive depiction of engineering satellite-based navigation and timing systems, signals, and receivers GPS as well as all new and modernized systems (SBAS, GLONASS, Galileo, BeiDou, QZSS, IRNSS) and signals being developed and fielded Theoretical and applied review questions, which can be used for homework or to obtain deeper insights into the material Extensive equations describing techniques and their performance, illustrated by MATLAB plots New results, novel insights, and innovative descriptions for key approaches and results in systems engineering and receiver design If you are an instructor and adopted this book for your course, please email [email protected] to get access to the instructor files for this book.




Position, Navigation, and Timing Technologies in the 21st Century


Book Description

Covers the latest developments in PNT technologies, including integrated satellite navigation, sensor systems, and civil applications Featuring sixty-four chapters that are divided into six parts, this two-volume work provides comprehensive coverage of the state-of-the-art in satellite-based position, navigation, and timing (PNT) technologies and civilian applications. It also examines alternative navigation technologies based on other signals-of-opportunity and sensors and offers a comprehensive treatment on integrated PNT systems for consumer and commercial applications. Volume 1 of Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil Applications contains three parts and focuses on the satellite navigation systems, technologies, and engineering and scientific applications. It starts with a historical perspective of GPS development and other related PNT development. Current global and regional navigation satellite systems (GNSS and RNSS), their inter-operability, signal quality monitoring, satellite orbit and time synchronization, and ground- and satellite-based augmentation systems are examined. Recent progresses in satellite navigation receiver technologies and challenges for operations in multipath-rich urban environment, in handling spoofing and interference, and in ensuring PNT integrity are addressed. A section on satellite navigation for engineering and scientific applications finishes off the volume. Volume 2 of Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil Applications consists of three parts and addresses PNT using alternative signals and sensors and integrated PNT technologies for consumer and commercial applications. It looks at PNT using various radio signals-of-opportunity, atomic clock, optical, laser, magnetic field, celestial, MEMS and inertial sensors, as well as the concept of navigation from Low-Earth Orbiting (LEO) satellites. GNSS-INS integration, neuroscience of navigation, and animal navigation are also covered. The volume finishes off with a collection of work on contemporary PNT applications such as survey and mobile mapping, precision agriculture, wearable systems, automated driving, train control, commercial unmanned aircraft systems, aviation, and navigation in the unique Arctic environment. In addition, this text: Serves as a complete reference and handbook for professionals and students interested in the broad range of PNT subjects Includes chapters that focus on the latest developments in GNSS and other navigation sensors, techniques, and applications Illustrates interconnecting relationships between various types of technologies in order to assure more protected, tough, and accurate PNT Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil Applications will appeal to all industry professionals, researchers, and academics involved with the science, engineering, and applications of position, navigation, and timing technologies. pnt21book.com




Fundamentals of Global Positioning System Receivers


Book Description

All the expert guidance you need to understand, build, and operate GPS receivers The Second Edition of this acclaimed publication enables readers to understand and apply the complex operation principles of global positioning system (GPS) receivers. Although GPS receivers are widely used in everyday life to aid in positioning and navigation, this is the only text that is devoted to complete coverage of their operation principles. The author, one of the foremost authorities in the GPS field, presents the material from a software receiver viewpoint, an approach that helps readers better understand operation and that reflects the forecasted integration of GPS receivers into such everyday devices as cellular telephones. Concentrating on civilian C/A code, the book provides the tools and information needed to understand and exploit all aspects of receiver technology as well as relevant navigation schemes: Overview of GPS basics and the constellation of satellites that comprise the GPS system Detailed examination of GPS signal structure, acquisition, and tracking Step-by-step presentation of the mathematical formulas for calculating a user's position Demonstration of the use of computer programs to run key equations Instructions for developing hardware to collect digitized data for a software GPS receiver Complete chapter demonstrating a GPS receiver following a signal flow to determine a user's position The Second Edition of this highly acclaimed text has been greatly expanded, including three new chapters: Acquisition of weak signals Tracking of weak signals GPS receiver related subjects Following the author's expert guidance and easy-to-follow style, engineers and scientists learn all that is needed to understand, build, and operate GPS receivers. The book's logical flow from basic concepts to applications makes it an excellent textbook for upper-level undergraduate and graduate students in electrical engineering, wireless communications, and computer science.




GNSS Remote Sensing


Book Description

The versatile and available GNSS signals can detect the Earth’s surface environments as a new, highly precise, continuous, all-weather and near-real-time remote sensing tool. This book presents the theory and methods of GNSS remote sensing as well as its applications in the atmosphere, oceans, land and hydrology. Ground-based atmospheric sensing, space-borne atmospheric sensing, reflectometry, ocean remote sensing, hydrology sensing as well as cryosphere sensing with the GNSS will be discussed per chapter in the book.