Near-Rings and Near-Fields


Book Description

Near-Rings and Near-Fields opens with three invited lectures on different aspects of the history of near-ring theory. These are followed by 26 papers reflecting the diversity of the subject in regard to geometry, topological groups, automata, coding theory and probability, as well as the purely algebraic structure theory of near-rings. Audience: Graduate students of mathematics and algebraists interested in near-ring theory.




Smarandache Near-Rings


Book Description

Generally, in any human field, a Smarandache Structure on a set A means a weak structure W on A such that there exists a proper subset B in A which is embedded with a stronger structure S. These types of structures occur in our everyday life, that's why we study them in this book. Thus, as a particular case: A Near-Ring is a non-empty set N together with two binary operations '+' and '.' such that (N, +) is a group (not necessarily abelian), (N, .) is a semigroup. For all a, b, c in N we have (a + b) . c = a . c + b . c. A Near-Field is a non-empty set P together with two binary operations '+' and '.' such that (P, +) is a group (not necessarily abelian), (P \ {0}, .) is a group. For all a, b, c I P we have (a + b) . c = a . c + b . c. A Smarandache Near-ring is a near-ring N which has a proper subset P in N, where P is a near-field (with respect to the same binary operations on N).




The Theory of Near-Rings


Book Description

This book offers an original account of the theory of near-rings, with a considerable amount of material which has not previously been available in book form, some of it completely new. The book begins with an introduction to the subject and goes on to consider the theory of near-fields, transformation near-rings and near-rings hosted by a group. The bulk of the chapter on near-fields has not previously been available in English. The transformation near-rings chapters considerably augment existing knowledge and the chapters on product hosting are essentially new. Other chapters contain original material on new classes of near-rings and non-abelian group cohomology. The Theory of Near-Rings will be of interest to researchers in the subject and, more broadly, ring and representation theorists. The presentation is elementary and self-contained, with the necessary background in group and ring theory available in standard references.




Near-Rings and Near-Fields


Book Description

Most topics in near-ring and near-field theory are treated here, along with an extensive introduction to the theory.There are two invited lectures: ``Non-Commutative Geometry, Near-Rings and Near-Fields'' which indicates the relevance of near-rings and near-fields for geometry, while ``Pseudo-Finite Near-Fields'' shows the impressive power of model theoretic methods. The remaining papers cover such topics as D.G. near-rings, radical theory, KT-near-fields, matrix near-rings, and applications to systems theory.




Nearrings, Nearfields And Related Topics


Book Description

Recent developments in various algebraic structures and the applications of those in different areas play an important role in Science and Technology. One of the best tools to study the non-linear algebraic systems is the theory of Near-rings.The forward note by G







Nearrings and Nearfields


Book Description

The present volume is the Proceedings of the 18th International Conference on Nearrings and Nearfields held at the Helmut-Schmidt-Universität, Universität der Bundeswehr Hamburg, from July 27 – August 3, 2003. It contains the written versions of the lectures by the five invited speakers. These concern recent developments of planar nearrings, nearrings of mappings, group nearrings and loop-nearrings. One of them is a long and very substantial research paper "The Z-Constrained Conjecture". They are followed by 13 contributions reflecting the diversity of the subject of nearrings and related structures. Besides the purely algebraic structure theory these papers show many connections of nearring theory with group theory, combinatorics, geometries, and topology. They all contain original research.




Integral Closure of Ideals, Rings, and Modules


Book Description

Ideal for graduate students and researchers, this book presents a unified treatment of the central notions of integral closure.




Lectures on Finite Fields and Galois Rings


Book Description

This is a textbook for graduate and upper level undergraduate students in mathematics, computer science, communication engineering and other fields. The explicit construction of finite fields and the computation in finite fields are emphasised. In particular, the construction of irreducible polynomials and the normal basis of finite fields are included. The essentials of Galois rings are also presented. This invaluable book has been written in a friendly style, so that lecturers can easily use it as a text and students can use it for self-study. A great number of exercises have been incorporated.




The Concise Handbook of Algebra


Book Description

It is by no means clear what comprises the "heart" or "core" of algebra, the part of algebra which every algebraist should know. Hence we feel that a book on "our heart" might be useful. We have tried to catch this heart in a collection of about 150 short sections, written by leading algebraists in these areas. These sections are organized in 9 chapters A, B, . . . , I. Of course, the selection is partly based on personal preferences, and we ask you for your understanding if some selections do not meet your taste (for unknown reasons, we only had problems in the chapter "Groups" to get enough articles in time). We hope that this book sets up a standard of what all algebraists are supposed to know in "their" chapters; interested people from other areas should be able to get a quick idea about the area. So the target group consists of anyone interested in algebra, from graduate students to established researchers, including those who want to obtain a quick overview or a better understanding of our selected topics. The prerequisites are something like the contents of standard textbooks on higher algebra. This book should also enable the reader to read the "big" Handbook (Hazewinkel 1999-) and other handbooks. In case of multiple authors, the authors are listed alphabetically; so their order has nothing to do with the amounts of their contributions.