Book Description
Near-rings: The Theory and its Applications
Author :
Publisher : Elsevier
Page : 487 pages
File Size : 14,89 MB
Release : 2011-10-10
Category : Mathematics
ISBN : 0080871348
Near-rings: The Theory and its Applications
Author : Bhavanari Satyanarayana
Publisher : CRC Press
Page : 482 pages
File Size : 18,56 MB
Release : 2013-05-21
Category : Computers
ISBN : 1439873100
Near Rings, Fuzzy Ideals, and Graph Theory explores the relationship between near rings and fuzzy sets and between near rings and graph theory. It covers topics from recent literature along with several characterizations. After introducing all of the necessary fundamentals of algebraic systems, the book presents the essentials of near rings theory, relevant examples, notations, and simple theorems. It then describes the prime ideal concept in near rings, takes a rigorous approach to the dimension theory of N-groups, gives some detailed proofs of matrix near rings, and discusses the gamma near ring, which is a generalization of both gamma rings and near rings. The authors also provide an introduction to fuzzy algebraic systems, particularly the fuzzy ideals of near rings and gamma near rings. The final chapter explains important concepts in graph theory, including directed hypercubes, dimension, prime graphs, and graphs with respect to ideals in near rings. Near ring theory has many applications in areas as diverse as digital computing, sequential mechanics, automata theory, graph theory, and combinatorics. Suitable for researchers and graduate students, this book provides readers with an understanding of near ring theory and its connection to fuzzy ideals and graph theory.
Author : Robert Lockhart
Publisher : Springer Nature
Page : 555 pages
File Size : 16,53 MB
Release : 2021-11-14
Category : Mathematics
ISBN : 3030817555
This book offers an original account of the theory of near-rings, with a considerable amount of material which has not previously been available in book form, some of it completely new. The book begins with an introduction to the subject and goes on to consider the theory of near-fields, transformation near-rings and near-rings hosted by a group. The bulk of the chapter on near-fields has not previously been available in English. The transformation near-rings chapters considerably augment existing knowledge and the chapters on product hosting are essentially new. Other chapters contain original material on new classes of near-rings and non-abelian group cohomology. The Theory of Near-Rings will be of interest to researchers in the subject and, more broadly, ring and representation theorists. The presentation is elementary and self-contained, with the necessary background in group and ring theory available in standard references.
Author : W. B. Vasantha Kandasamy
Publisher : Infinite Study
Page : 201 pages
File Size : 42,95 MB
Release : 2002
Category : Mathematics
ISBN : 1931233667
Generally, in any human field, a Smarandache Structure on a set A means a weak structure W on A such that there exists a proper subset B in A which is embedded with a stronger structure S. These types of structures occur in our everyday life, that's why we study them in this book. Thus, as a particular case: A Near-Ring is a non-empty set N together with two binary operations '+' and '.' such that (N, +) is a group (not necessarily abelian), (N, .) is a semigroup. For all a, b, c in N we have (a + b) . c = a . c + b . c. A Near-Field is a non-empty set P together with two binary operations '+' and '.' such that (P, +) is a group (not necessarily abelian), (P \ {0}, .) is a group. For all a, b, c I P we have (a + b) . c = a . c + b . c. A Smarandache Near-ring is a near-ring N which has a proper subset P in N, where P is a near-field (with respect to the same binary operations on N).
Author : Dinh Van Huynh
Publisher : American Mathematical Soc.
Page : 330 pages
File Size : 30,41 MB
Release : 2014-02-21
Category : Mathematics
ISBN : 0821887971
This volume contains the proceedings of the Ring Theory Session in honor of T. Y. Lam's 70th birthday, at the 31st Ohio State-Denison Mathematics Conference, held from May 25-27, 2012, at The Ohio State University, Columbus, Ohio. Included are expository articles and research papers covering topics such as cyclically presented modules, Eggert's conjecture, the Mittag-Leffler conditions, clean rings, McCoy rings, QF rings, projective and injective modules, Baer modules, and Leavitt path algebras. Graduate students and researchers in many areas of algebra will find this volume valuable as the papers point out many directions for future work; in particular, several articles contain explicit lists of open questions.
Author : Kuncham Syam Prasad
Publisher : World Scientific
Page : 324 pages
File Size : 36,75 MB
Release : 2016-11-28
Category : Mathematics
ISBN : 981320737X
Recent developments in various algebraic structures and the applications of those in different areas play an important role in Science and Technology. One of the best tools to study the non-linear algebraic systems is the theory of Near-rings.The forward note by G
Author : C. Nastasescu
Publisher : Springer Science & Business Media
Page : 382 pages
File Size : 24,6 MB
Release : 1987-04-30
Category : Mathematics
ISBN : 9789027724618
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Gad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of s9phistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.
Author : A.A. Tuganbaev
Publisher : Springer Science & Business Media
Page : 363 pages
File Size : 39,36 MB
Release : 2013-03-09
Category : Mathematics
ISBN : 9401598789
Preface All rings are assumed to be associative and (except for nilrings and some stipulated cases) to have nonzero identity elements. A ring A is said to be regular if for every element a E A, there exists an element b E A with a = aba. Regular rings are well studied. For example, [163] and [350] are devoted to regular rings. A ring A is said to be tr-regular if for every element a E A, there is an element n b E A such that an = anba for some positive integer n. A ring A is said to be strongly tr-regular if for every a E A, there is a positive integer n with n 1 n an E a + An Aa +1. It is proved in [128] that A is a strongly tr-regular ring if and only if for every element a E A, there is a positive integer m with m 1 am E a + A. Every strongly tr-regular ring is tr-regular [38]. If F is a division ring and M is a right vector F-space with infinite basis {ei}~l' then End(MF) is a regular (and tr-regular) ring that is not strongly tr-regular. The factor ring of the ring of integers with respect to the ideal generated by the integer 4 is a strongly tr-regular ring that is not regular.
Author : G. Betsch
Publisher : Elsevier
Page : 313 pages
File Size : 32,86 MB
Release : 2011-09-22
Category : Mathematics
ISBN : 0080872484
Most topics in near-ring and near-field theory are treated here, along with an extensive introduction to the theory.There are two invited lectures: ``Non-Commutative Geometry, Near-Rings and Near-Fields'' which indicates the relevance of near-rings and near-fields for geometry, while ``Pseudo-Finite Near-Fields'' shows the impressive power of model theoretic methods. The remaining papers cover such topics as D.G. near-rings, radical theory, KT-near-fields, matrix near-rings, and applications to systems theory.
Author : Gilberto Bini
Publisher : Springer Science & Business Media
Page : 181 pages
File Size : 42,28 MB
Release : 2012-12-06
Category : Technology & Engineering
ISBN : 1461509572
Foreword by Dieter Jungnickel Finite Commutative Rings and their Applications answers a need for an introductory reference in finite commutative ring theory as applied to information and communication theory. This book will be of interest to both professional and academic researchers in the fields of communication and coding theory. The book is a concrete and self-contained introduction to finite commutative local rings, focusing in particular on Galois and Quasi-Galois rings. The reader is provided with an active and concrete approach to the study of the purely algebraic structure and properties of finite commutative rings (in particular, Galois rings) as well as to their applications to coding theory. Finite Commutative Rings and their Applications is the first to address both theoretical and practical aspects of finite ring theory. The authors provide a practical approach to finite rings through explanatory examples, thereby avoiding an abstract presentation of the subject. The section on Quasi-Galois rings presents new and unpublished results as well. The authors then introduce some applications of finite rings, in particular Galois rings, to coding theory, using a solid algebraic and geometric theoretical background.