Neuronal Networks in Brain Function, CNS Disorders, and Therapeutics


Book Description

Neuronal Networks in Brain Function, CNS Disorders, and Therapeutics, edited by two leaders in the field, offers a current and complete review of what we know about neural networks. How the brain accomplishes many of its more complex tasks can only be understood via study of neuronal network control and network interactions. Large networks can undergo major functional changes, resulting in substantially different brain function and affecting everything from learning to the potential for epilepsy. With chapters authored by experts in each topic, this book advances the understanding of: - How the brain carries out important tasks via networks - How these networks interact in normal brain function - Major mechanisms that control network function - The interaction of the normal networks to produce more complex behaviors - How brain disorders can result from abnormal interactions - How therapy of disorders can be advanced through this network approach This book will benefit neuroscience researchers and graduate students with an interest in networks, as well as clinicians in neuroscience, pharmacology, and psychiatry dealing with neurobiological disorders. - Utilizes perspectives and tools from various neuroscience subdisciplines (cellular, systems, physiologic), making the volume broadly relevant - Chapters explore normal network function and control mechanisms, with an eye to improving therapies for brain disorders - Reflects predominant disciplinary shift from an anatomical to a functional perspective of the brain - Edited work with chapters authored by leaders in the field around the globe – the broadest, most expert coverage available




Inhibitory Synaptic Plasticity


Book Description

This volume will explore the most recent findings on cellular mechanisms of inhibitory plasticity and its functional role in shaping neuronal circuits, their rewiring in response to experience, drug addiction and in neuropathology. Inhibitory Synaptic Plasticity will be of particular interest to neuroscientists and neurophysiologists.




Translational Research in Traumatic Brain Injury


Book Description

Traumatic brain injury (TBI) remains a significant source of death and permanent disability, contributing to nearly one-third of all injury related deaths in the United States and exacting a profound personal and economic toll. Despite the increased resources that have recently been brought to bear to improve our understanding of TBI, the developme




Neural Plasticity and Memory


Book Description

A comprehensive, multidisciplinary review, Neural Plasticity and Memory: From Genes to Brain Imaging provides an in-depth, up-to-date analysis of the study of the neurobiology of memory. Leading specialists share their scientific experience in the field, covering a wide range of topics where molecular, genetic, behavioral, and brain imaging techniq




The Rewiring Brain


Book Description

The adult brain is not as hard-wired as traditionally thought. By modifying their small- or large-scale morphology, neurons can make new synaptic connections or break existing ones (structural plasticity). Structural changes accompany memory formation and learning, and are induced by neurogenesis, neurodegeneration and brain injury such as stroke. Exploring the role of structural plasticity in the brain can be greatly assisted by mathematical and computational models, as they enable us to bridge the gap between system-level dynamics and lower level cellular and molecular processes. However, most traditional neural network models have fixed neuronal morphologies and a static connectivity pattern, with plasticity merely arising from changes in the strength of existing synapses (synaptic plasticity). In The Rewiring Brain, the editors bring together for the first time contemporary modeling studies that investigate the implications of structural plasticity for brain function and pathology. Starting with an experimental background on structural plasticity in the adult brain, the book covers computational studies on homeostatic structural plasticity, the impact of structural plasticity on cognition and cortical connectivity, the interaction between synaptic and structural plasticity, neurogenesis-related structural plasticity, and structural plasticity in neurological disorders. Structural plasticity adds a whole new dimension to brain plasticity, and The Rewiring Brain shows how computational approaches may help to gain a better understanding of the full adaptive potential of the adult brain. The book is written for both computational and experimental neuroscientists. - Reviews the current state of knowledge of structural plasticity in the adult brain - Gives a comprehensive overview of computational studies on structural plasticity - Provides insights into the potential driving forces of structural plasticity and the functional implications of structural plasticity for learning and memory - Serves as inspiration for developing novel treatment strategies for stimulating functional repair after brain damage







The olivo-cerebellar system


Book Description

During the last decades, investigations on the olivo-cerebellar system have attained a high level of sophistication, which led to redefinitions of several structural and functional properties of neurons, synapses, connections and circuits. Research has expanded and deepened in so many directions and so many theories and models have been proposed that an ensemble review of the matter is now needed. Yet, hot topics remain open and scientific discussion is very lively at several fronts. One major question, here as well as in other major brain circuits, is how single neurons and synaptic properties emerge at the network level and contribute to behavioural regulation via neuronal plasticity. Other major aspects that this Research Topic covers and discusses include the development and circuit organization of the olivo-cerebellar network, the established and recent theories of learning and motor control, and the emerging role of the cerebellum in cognitive processing. By touching on such varied and encompassing subjects, this Frontiers Special Topic aims to highlight the state of the art and stimulate future research. We hope that this unique collection of high-quality articles from experts in the field will provide scientists with a powerful basis of knowledge and inspiration to enucleate the major issues deserving further attention.




Spike-timing dependent plasticity


Book Description

Hebb's postulate provided a crucial framework to understand synaptic alterations underlying learning and memory. Hebb's theory proposed that neurons that fire together, also wire together, which provided the logical framework for the strengthening of synapses. Weakening of synapses was however addressed by "not being strengthened", and it was only later that the active decrease of synaptic strength was introduced through the discovery of long-term depression caused by low frequency stimulation of the presynaptic neuron. In 1994, it was found that the precise relative timing of pre and postynaptic spikes determined not only the magnitude, but also the direction of synaptic alterations when two neurons are active together. Neurons that fire together may therefore not necessarily wire together if the precise timing of the spikes involved are not tighly correlated. In the subsequent 15 years, Spike Timing Dependent Plasticity (STDP) has been found in multiple brain brain regions and in many different species. The size and shape of the time windows in which positive and negative changes can be made vary for different brain regions, but the core principle of spike timing dependent changes remain. A large number of theoretical studies have also been conducted during this period that explore the computational function of this driving principle and STDP algorithms have become the main learning algorithm when modeling neural networks. This Research Topic will bring together all the key experimental and theoretical research on STDP.




The Neuroscience of Adolescence


Book Description

Written by an award-winning developmental neuroscientist, this is a comprehensive and cutting-edge account of the latest research on the adolescent brain.




Cognitive Enhancement in Schizophrenia and Related Disorders


Book Description

A practical guide on how to assess and treat schizophrenia and related disorders using cognitive rehabilitation.