Network Traffic Engineering


Book Description

A comprehensive guide to the concepts and applications of queuing theory and traffic theory Network Traffic Engineering: Models and Applications provides an advanced level queuing theory guide for students with a strong mathematical background who are interested in analytic modeling and performance assessment of communication networks. The text begins with the basics of queueing theory before moving on to more advanced levels. The topics covered in the book are derived from the most cutting-edge research, project development, teaching activity, and discussions on the subject. They include applications of queuing and traffic theory in: LTE networks Wi-Fi networks Ad-hoc networks Automated vehicles Congestion control on the Internet The distinguished author seeks to show how insight into practical and real-world problems can be gained by means of quantitative modeling. Perfect for graduate students of computer engineering, computer science, telecommunication engineering, and electrical engineering, Network Traffic Engineering offers a supremely practical approach to a rapidly developing field of study and industry.




Traffic Engineering with MPLS


Book Description

Design, configure, and manage MPLS TE to optimize network performance Almost every busy network backbone has some congested links while others remain underutilized. That's because shortest-path routing protocols send traffic down the path that is shortest without considering other network parameters, such as utilization and traffic demands. Using Traffic Engineering (TE), network operators can redistribute packet flows to attain more uniform distribution across all links. Forcing traffic onto specific pathways allows you to get the most out of your existing network capacity while making it easier to deliver consistent service levels to customers at the same time. Cisco(r) Multiprotocol Label Switching (MPLS) lends efficiency to very large networks, and is the most effective way to implement TE. MPLS TE routes traffic flows across the network by aligning resources required by a given flow with actual backbone capacity and topology. This constraint-based routing approach feeds the network route traffic down one or more pathways, preventing unexpected congestion and enabling recovery from link or node failures. Traffic Engineering with MPLSprovides you with information on how to use MPLS TE and associated features to maximize network bandwidth. This book focuses on real-world applications, from design scenarios to feature configurations to tools that can be used in managing and troubleshooting MPLS TE. Assuming some familiarity with basic label operations, this guide focuses mainly on the operational aspects of MPLS TE-how the various pieces work and how to configure and troubleshoot them. Additionally, this book addresses design and scalability issues along with extensive deployment tips to help you roll out MPLS TE on your own network. Understand the background of TE and MPLS, and brush up on MPLS forwarding basics Learn about router information distribution and how to bring up MPLS TE tunnels in a network Understand MPLS TE's Constrained Shortest Path First (CSPF) and mechanisms you can use to influence CSPF's path calculation Use the Resource Reservation Protocol (RSVP) to implement Label-Switched Path setup Use various mechanisms to forward traffic down a tunnel Integrate MPLS into the IP quality of service (QoS) spectrum of services Utilize Fast Reroute (FRR) to mitigate packet loss associated with link and node failures Understand Simple Network Management Protocol (SNMP)-based measurement and accounting services that are available for MPLS Evaluate design scenarios for scalable MPLS TE deployments Manage MPLS TE networks by examining common configuration mistakes and utilizing tools for troubleshooting MPLS TE problems "Eric and Ajay work in the development group at Cisco that built Traffic Engineering. They are among those with the greatest hands-on experience with this application. This book is the product of their experience." -George Swallow, Cisco Systems, Architect for Traffic Engineering Co-Chair, IETF MPLS Working Group Eric Osborne, CCIE(r) #4122, has been doing Internet engineering of one sort or another since 1995. He joined Cisco in 1998 to work in the Cisco Technical Assistance Center (TAC), moved from there to the ISP Expert team and then to the MPLS Deployment team. He has been involved in MPLS since the Cisco IOS(r) Software Release 11.1CT days. Ajay Simha, CCIE #2970, joined the Cisco TAC in 1996. He then went on to support tier 1 and 2 ISPs as part of Cisco's ISP Expert team. Ajay has been working as an MPLS deployment engineer since October 1999, and he has first-hand experience in troubleshooting, designing, and deploying MPLS.




The Competitive Internet Service Provider


Book Description

Due to the dramatic increase in competition over the last few years, it has become more and more important for Internet Service Providers (ISPs) to run an efficient business and offer an adequate Quality of Service. The Competitive Internet Service Provider is a comprehensive guide for those seeking to do just that. Oliver Heckmann approaches the issue from a system point of view, looking not only at running a network, but also at connecting the network with peering and transit partners or planning the expansion of the network. The Competitive Internet Service Provider: Offers an advanced reference on the topic, drawing on state-of-the art research in network technology. Clearly defines the criteria enabling ISPs to operate with the greatest efficiency and deliver adequate Quality of Service. Discusses the implications of the future multiservice Internet and multimedia applications such as Voice over IP, peer-to-peer, or network games. Delivers a comparative evaluation of different feasible Quality of Service approaches. Explores scientific methods such as queuing theory, network calculus, and optimization theory. Illustrates concepts throughout with mathematical models and simulations. This invaluable reference will provide academic and industrial researchers in the field of network and communications technology, graduate students on telecommunications courses, as well as ISP managers, engineers and technicians, equipment manufacturers and consultants, with an understanding of the concepts and issues involved in running a successful ISP.




Metro Ethernet


Book Description

& Discover the latest developments in Metro networking, Ethernet, and MPLS services and what they can do for your organization. & & Learn from the easy-to-read format that enables networking professionals of all levels to understand the concepts. & & Gain from the experience of industry innovator and best-selling Cisco Press author, Sam Halabi, author of Internet Routing Architectures.




Network Routing


Book Description

Network routing can be broadly categorized into Internet routing, PSTN routing, and telecommunication transport network routing. This book systematically considers these routing paradigms, as well as their interoperability. The authors discuss how algorithms, protocols, analysis, and operational deployment impact these approaches. A unique feature of the book is consideration of both macro-state and micro-state in routing; that is, how routing is accomplished at the level of networks and how routers or switches are designed to enable efficient routing. In reading this book, one will learn about 1) the evolution of network routing, 2) the role of IP and E.164 addressing in routing, 3) the impact on router and switching architectures and their design, 4) deployment of network routing protocols, 5) the role of traffic engineering in routing, and 6) lessons learned from implementation and operational experience. This book explores the strengths and weaknesses that should be considered during deployment of future routing schemes as well as actual implementation of these schemes. It allows the reader to understand how different routing strategies work and are employed and the connection between them. This is accomplished in part by the authors' use of numerous real-world examples to bring the material alive. Bridges the gap between theory and practice in network routing, including the fine points of implementation and operational experience Routing in a multitude of technologies discussed in practical detail, including, IP/MPLS, PSTN, and optical networking Routing protocols such as OSPF, IS-IS, BGP presented in detail A detailed coverage of various router and switch architectures A comprehensive discussion about algorithms on IP-lookup and packet classification Accessible to a wide audience due to its vendor-neutral approach




Modern Traffic Engineering in the System Approach to the Development of Traffic Networks


Book Description

This book presents a number of guidelines that are particularly useful in the context of decisions related to system-approach-based modern traffic engineering for the development of transport networks. Including practical examples and describing decision-making support systems it provides valuable insights for those seeking solutions to contemporary transport system problems on a daily basis, such as professional working for local authorities involved in planning urban and regional traffic development strategies as well as representatives of business and industry directly involved in implementing traffic engineering solutions. The guidelines provided enable readers to address problems in a timely manner and simplify the choice of appropriate strategies (including those connected with the relation between pedestrians and vehicle traffic flows, IT development in freight transport, safety issues related to accidents in road tunnels, but also open areas, like roundabouts and crossings). Furthermore, since the book also examines new theoretical-model approaches (including the model of arrival time distribution forming in a dense vehicle flow, the methodological basis of modelling and optimization of transport processes in the interaction of railways and maritime transport, traffic flow surveys and measurements, transport behaviour patterns, human factors in traffic engineering, and road condition modelling), it also appeals to researches and scientists studying these problems. This book features selected papers submitted to and presented at the 16th Scientific and Technical Conference Transport Systems Theory and Practice organized by the Department of Transport Systems and Traffic Engineering at the Faculty of Transport of the Silesian University of Technology. The conference was held on 16–18 September 2019 in Katowice (Poland), more details at www.TSTP.polsl.pl.




MPLS Network Management


Book Description

MPLS-enabled networks are enjoying tremendous growth, but practical information on managing MPLS-enabled networks has remained hard to find. Until now. MPLS Network Management: MIBs, Tools, and Techniques is the first and only book that will help you master MPLS management technologies and techniques, as they apply to classic MPLS networks, traffic-engineered networks, and VPNs. Written by the co-author of most current MPLS management standards, it provides detailed, authoritative coverage of official MIBs, examining key topics ranging from syntax to access levels to object interaction. It also offers extensive consideration of third-party management interfaces, including tools for metering traffic and predicting traffic growth and behavior. If you're a network operator, network device engineer, or MPLS application developer, you need this book to get all you can out of all of MPLS's many capabilities.* The only book devoted entirely to the tools and techniques for controlling, monitoring, debugging, and optimizing MPLS-enabled networks. * Authoritative information from the co-author of most IETF MIBs relating to MPLS and GMPLS, PWE3, and PPVPN. * Covers both standards-based and proprietary management technologies. * Includes interviews with seminal figures in the development of MPLS. * Via a companion web site, provides information on late-breaking developments in MPLS management and links to additional resources. * To be followed by a second volume presenting best-practice case studies dealing with how real companies approach the management of their MPLS networks.




Data Network Engineering


Book Description

It is certain that, over the next few years, data traffic will dwarf voice traffic on telecommunications networks. Growth in data-traffic volumes far exceeds that for voice, and is driven by increased use of applications such as e-mail attachments, remote printing and fileserver access, and the now omnipresent World Wide Web. The growth of data networking to connect computers with each other and with their peripheral devices began in earnest in the 1970s, took off in the 1980s and exploded in the 1990s. The early 21st century will see ever faster, more cost effective networks providing flexible data access into ever more businesses and homes. Since the 1970s there have been great advances in technology. For the past twenty years the processing power of computers has continued to grow with no hint of slowing - recall the oft-cited Moore's Law claiming that this power doubles every 18 months. Advances in the data networking equipment required to support the data traffic generated have been enormous. The pace of development from early X. 25 and modem technology through to some of the advanced equipment functionality now available is breathtaking - it is sometimes hard to believe that the practical router is barely ten years old! This book provides an overview of the advanced data networking field by bringing together chapters on local area networks, wide area networks and their application.




Traffic Engineering Handbook


Book Description

Get a complete look into modern traffic engineering solutions Traffic Engineering Handbook, Seventh Edition is a newly revised text that builds upon the reputation as the go-to source of essential traffic engineering solutions that this book has maintained for the past 70 years. The updated content reflects changes in key industry standards, and shines a spotlight on the needs of all users, the design of context-sensitive roadways, and the development of more sustainable transportation solutions. Additionally, this resource features a new organizational structure that promotes a more functionally-driven, multimodal approach to planning, designing, and implementing transportation solutions. A branch of civil engineering, traffic engineering concerns the safe and efficient movement of people and goods along roadways. Traffic flow, road geometry, sidewalks, crosswalks, cycle facilities, shared lane markings, traffic signs, traffic lights, and more—all of these elements must be considered when designing public and private sector transportation solutions. Explore the fundamental concepts of traffic engineering as they relate to operation, design, and management Access updated content that reflects changes in key industry-leading resources, such as the Highway Capacity Manual (HCM), Manual on Uniform Traffic Control Devices (MUTCD), AASSHTO Policy on Geometric Design, Highway Safety Manual (HSM), and Americans with Disabilities Act Understand the current state of the traffic engineering field Leverage revised information that homes in on the key topics most relevant to traffic engineering in today's world, such as context-sensitive roadways and sustainable transportation solutions Traffic Engineering Handbook, Seventh Edition is an essential text for public and private sector transportation practitioners, transportation decision makers, public officials, and even upper-level undergraduate and graduate students who are studying transportation engineering.




Computational Science — ICCS 2004


Book Description

The International Conference on Computational Science (ICCS 2004) held in Krak ́ ow, Poland, June 6–9, 2004, was a follow-up to the highly successful ICCS 2003 held at two locations, in Melbourne, Australia and St. Petersburg, Russia; ICCS 2002 in Amsterdam, The Netherlands; and ICCS 2001 in San Francisco, USA. As computational science is still evolving in its quest for subjects of inves- gation and e?cient methods, ICCS 2004 was devised as a forum for scientists from mathematics and computer science, as the basic computing disciplines and application areas, interested in advanced computational methods for physics, chemistry, life sciences, engineering, arts and humanities, as well as computer system vendors and software developers. The main objective of this conference was to discuss problems and solutions in all areas, to identify new issues, to shape future directions of research, and to help users apply various advanced computational techniques. The event harvested recent developments in com- tationalgridsandnextgenerationcomputingsystems,tools,advancednumerical methods, data-driven systems, and novel application ?elds, such as complex - stems, ?nance, econo-physics and population evolution.