Networks and Devices Using Planar Transmissions Lines


Book Description

A single text that incorporates all of the theoretical principles and practical aspects of planar transmission line devices - since the early development of striplines, it has been sought by countless microwave engineers, researchers, and students. With the publication of Networks and Devices Using Planar Transmission Lines, the search for that one authoritative resource is over. This is more than just a handbook, much more than a theoretical treatment. It's the ideal integration of the theory and applications of planar transmission lines and devices. Striplines, microstrips, slot lines, coplanar waveguides and strips, phase shifters, hybrids, and more - the author examines them all. For each type of structure, his treatment is complete and self-contained, including: Geometric characteristics Electric and magnetic field lines Solution techniques for the electromagnetic problem Quasi-static, coupled modes, and full wave analysis methods Design equations Attenuation Practical considerations Of particular interest is the author's comprehensive treatment of planar ferrimagnetic devices, such as phase shifters, isolators, and circulators, and three appendices dedicated to the theoretical aspects of ferrimagetism. Five other appendices provide thorough reviews of various theoretical concepts implicit in the body of the work, such as wave theory, the external properties of networks, and resonant circuits.




Networks and Devices Using Planar Transmissions Lines


Book Description

A single text that incorporates all of the theoretical principles and practical aspects of planar transmission line devices - since the early development of striplines, it has been sought by countless microwave engineers, researchers, and students. With the publication of Networks and Devices Using Planar Transmission Lines, the search for that one authoritative resource is over. This is more than just a handbook, much more than a theoretical treatment. It's the ideal integration of the theory and applications of planar transmission lines and devices. Striplines, microstrips, slot lines, coplanar waveguides and strips, phase shifters, hybrids, and more - the author examines them all. For each type of structure, his treatment is complete and self-contained, including: Geometric characteristics Electric and magnetic field lines Solution techniques for the electromagnetic problem Quasi-static, coupled modes, and full wave analysis methods Design equations Attenuation Practical considerations Of particular interest is the author's comprehensive treatment of planar ferrimagnetic devices, such as phase shifters, isolators, and circulators, and three appendices dedicated to the theoretical aspects of ferrimagetism. Five other appendices provide thorough reviews of various theoretical concepts implicit in the body of the work, such as wave theory, the external properties of networks, and resonant circuits.




Introduction To Modern Planar Transmission Lines


Book Description

Provides a comprehensive discussion of planar transmission lines and their applications, focusing on physical understanding, analytical approach, and circuit models Planar transmission lines form the core of the modern high-frequency communication, computer, and other related technology. This advanced text gives a complete overview of the technology and acts as a comprehensive tool for radio frequency (RF) engineers that reflects a linear discussion of the subject from fundamentals to more complex arguments. Introduction to Modern Planar Transmission Lines: Physical, Analytical, and Circuit Models Approach begins with a discussion of waves on transmission lines and waves in material medium, including a large number of illustrative examples from published results. After explaining the electrical properties of dielectric media, the book moves on to the details of various transmission lines including waveguide, microstrip line, co-planar waveguide, strip line, slot line, and coupled transmission lines. A number of special and advanced topics are discussed in later chapters, such as fabrication of planar transmission lines, static variational methods for planar transmission lines, multilayer planar transmission lines, spectral domain analysis, resonators, periodic lines and surfaces, and metamaterial realization and circuit models. Emphasizes modeling using physical concepts, circuit-models, closed-form expressions, and full derivation of a large number of expressions Explains advanced mathematical treatment, such as the variation method, conformal mapping method, and SDA Connects each section of the text with forward and backward cross-referencing to aid in personalized self-study Introduction to Modern Planar Transmission Lines is an ideal book for senior undergraduate and graduate students of the subject. It will also appeal to new researchers with the inter-disciplinary background, as well as to engineers and professionals in industries utilizing RF/microwave technologies.




Artificial Transmission Lines for RF and Microwave Applications


Book Description

This book presents and discusses alternatives to ordinary transmission lines for the design and implementation of advanced RF/microwave components in planar technology. This book is devoted to the analysis, study and applications of artificial transmission lines mostly implemented by means of a host line conveniently modified (e.g., with modulation of transverse dimensions, with etched patterns in the metallic layers, etc.) or with reactive loading, in order to achieve novel device functionalities, superior performance, and/or reduced size. The author begins with an introductory chapter dedicated to the fundamentals of planar transmission lines. Chapter 2 is focused on artificial transmission lines based on periodic structures (including non-uniform transmission lines and reactively-loaded lines), and provides a comprehensive analysis of the coupled mode theory. Chapters 3 and 4 are dedicated to artificial transmission lines inspired by metamaterials, or based on metamaterial concepts. These chapters include the main practical implementations of such lines and their circuit models, and a wide overview of their RF/microwave applications (including passive and active circuits and antennas). Chapter 5 focuses on reconfigurable devices based on tunable artificial lines, and on non-linear transmission lines. The chapter also introduces several materials and components to achieve tuning, including diode varactors, RF-MEMS, ferroelectrics, and liquid crystals. Finally, Chapter 6 covers other advanced transmission lines and wave guiding structures, such as electroinductive-/magnetoinductive-wave lines, common-mode suppressed balanced lines, lattice-network artificial lines, and substrate integrated waveguides. Artificial Transmission Lines for RF and Microwave Applications provides an in-depth analysis and discussion of artificial transmission lines, including design guidelines that can be useful to researchers, engineers and students.




Integrated Microwave Front-ends with Avionics Applications


Book Description

This highly practical resource offers you an in-depth understanding of microwave front end integration and how it is applied in the avionics field. You find detailed guidance on circuit integration, including coverage of component miniaturization, hybrid and monolithic integrated circuits, and 3D design. The book addresses system integration with discussions on the combination of different avionic systems, single antenna design, top/bottom front end combination, and integration of passive and active antenna modules. This first-of-its-kind volume features unique material on novel structures of avionics front end, novel transmission lines, elements, and devices, as well as new strategies for microwave front-end design. Supported with nearly 200 illustrations and more than 160 equations, this book is a valuable professional reference and also serves well as a postgraduate textbook.




Passive RF and Microwave Integrated Circuits


Book Description

The growth in RF and wireless/mobile computing devices that operate at microwave frequencies has resulted in explosive demand for integrated circuits capable of operating at such frequencies in order to accomplish functions like frequency division, phase shifting, attenuation, and isolators and circulators for antennas. This book is an introduction to such ICs, combining theory and practical applications of those devices. In addition to this combined theory and application approach, the author discusses the critical importance of differing fabrication materials on the performance of ICs at different frequencies. This is an area often overlooked when choosing ICs for RF and microwave applications, yet it can be a crucial factor in how an IC performs in a given application. - Gives reader a solid background in an increasingly important area of circuit design - Emphasis on combination of theoretical discussions with practical application examples - In-depth discussion of critical, but often overlooked topic of different fabrication material performances at varying frequencies




Microwave Journal


Book Description




Foundations for Microstrip Circuit Design


Book Description

Building on the success of the previous three editions, Foundations for Microstrip Circuit Design offers extensive new, updated and revised material based upon the latest research. Strongly design-oriented, this fourth edition provides the reader with a fundamental understanding of this fast expanding field making it a definitive source for professional engineers and researchers and an indispensable reference for senior students in electronic engineering. Topics new to this edition: microwave substrates, multilayer transmission line structures, modern EM tools and techniques, microstrip and planar transmision line design, transmission line theory, substrates for planar transmission lines, Vias, wirebonds, 3D integrated interposer structures, computer-aided design, microstrip and power-dependent effects, circuit models, microwave network analysis, microstrip passive elements, and slotline design fundamentals.




Transmission Lines and Wave Propagation


Book Description

Transmission Lines and Wave Propagation, Fourth Edition helps readers develop a thorough understanding of transmission line behavior, as well as their advantages and limitations. Developments in research, programs, and concepts since the first edition presented a demand for a version that reflected these advances. Extensively revised, the fourth edition of this bestselling text does just that, offering additional formulas and expanded discussions and references, in addition to a chapter on coupled transmission lines. What Makes This Text So Popular? The first part of the book explores distributed-circuit theory and presents practical applications. Using observable behavior, such as travel time, attenuation, distortion, and reflection from terminations, it analyzes signals and energy traveling on transmission lines at finite velocities. The remainder of the book reviews the principles of electromagnetic field theory, then applies Maxwell's equations for time-varying electromagnetic fields to coaxial and parallel conductor lines, as well as rectangular, circular, and elliptical cylindrical hollow metallic waveguides, and fiber-optic cables. This progressive organization and expanded coverage make this an invaluable reference. With its analysis of coupled lines, it is perfect as a text for undergraduate courses, while graduate students will appreciate it as an excellent source of extensive reference material. This Edition Includes: An overview of fiber optic cables emphasizing the principle types, their propagating modes, and dispersion Discussion of the role of total internal reflection at the core/cladding interface, and the specific application of boundary conditions to a circularly symmetrical propagating mode A chapter on coupled transmission lines, including coupled-line network analysis and basic crosstalk study More information on pulse propagation on lines with skin-effect losses A freeware program available online Solutions manual available with qualifying course adoption




Transmission Lines and Lumped Circuits


Book Description

The theory of transmission lines is a classical topic of electrical engineering. Recently this topic has received renewed attention and has been a focus of considerable research. This is because the transmisson line theory has found new and important applications in the area of high-speed VLSI interconnects, while it has retained its significance in the area of power transmission. In many applications, transmission lines are connected to nonlinear circuits. For instance, interconnects of high-speed VLSI chips can be modelled as transmission lines loaded with nonlinear elements. These nonlinearities may lead to many new effects such as instability, chaos, generation of higher order harmonics, etc. The mathematical models of transmission lines with nonlinear loads consist of the linear partial differential equations describing the current and voltage dynamics along the lines together with the nonlinear boundary conditions imposed by the nonlinear loads connected to the lines. These nonlinear boundary conditions make the mathematical treatment very difficult. For this reason, the analysis of transmission lines with nonlinear loads has not been addressed adequately in the existing literature. The unique and distinct feature of the proposed book is that it will present systematic, comprehensive, and in-depth analysis of transmission lines with nonlinear loads. - A unified approach for the analysis of networks composed of distributed and lumped circuits - A simple, concise and completely general way to present the wave propagation on transmission lines, including a thorough study of the line equations in characteristic form - Frequency and time domain multiport representations of any linear transmission line - A detailed analysis of the influence on the line characterization of the frequency and space dependence of the line parameters - A rigorous study of the properties of the analytical and numerical solutions of the network equations - The associated discrete circuits and the associated resisitive circuits of transmission lines - Periodic solutions, bifurcations and chaos in transmission lines connected to noninear lumped circuits