Neural Network-Based Adaptive Control of Uncertain Nonlinear Systems


Book Description

The focus of this book is the application of artificial neural networks in uncertain dynamical systems. It explains how to use neural networks in concert with adaptive techniques for system identification, state estimation, and control problems. The authors begin with a brief historical overview of adaptive control, followed by a review of mathematical preliminaries. In the subsequent chapters, they present several neural network-based control schemes. Each chapter starts with a concise introduction to the problem under study, and a neural network-based control strategy is designed for the simplest case scenario. After these designs are discussed, different practical limitations (i.e., saturation constraints and unavailability of all system states) are gradually added, and other control schemes are developed based on the primary scenario. Through these exercises, the authors present structures that not only provide mathematical tools for navigating control problems, but also supply solutions that are pertinent to real-life systems.




Nonlinear and Adaptive Control with Applications


Book Description

The authors here provide a detailed treatment of the design of robust adaptive controllers for nonlinear systems with uncertainties. They employ a new tool based on the ideas of system immersion and manifold invariance. New algorithms are delivered for the construction of robust asymptotically-stabilizing and adaptive control laws for nonlinear systems. The methods proposed lead to modular schemes that are easier to tune than their counterparts obtained from Lyapunov redesign.




Nonlinear Control of Engineering Systems


Book Description

This practical yet rigorous book provides a development of nonlinear, Lyapunov-based tools and their use in the solution of control-theoretic problems. Rich in motivating examples and new design techniques, the text balances theoretical foundations and real-world implementation.




Adaptive Neural Network Control Of Robotic Manipulators


Book Description

Recently, there has been considerable research interest in neural network control of robots, and satisfactory results have been obtained in solving some of the special issues associated with the problems of robot control in an “on-and-off” fashion. This book is dedicated to issues on adaptive control of robots based on neural networks. The text has been carefully tailored to (i) give a comprehensive study of robot dynamics, (ii) present structured network models for robots, and (iii) provide systematic approaches for neural network based adaptive controller design for rigid robots, flexible joint robots, and robots in constraint motion. Rigorous proof of the stability properties of adaptive neural network controllers is provided. Simulation examples are also presented to verify the effectiveness of the controllers, and practical implementation issues associated with the controllers are also discussed.




Functional Adaptive Control


Book Description

Unique in its systematic approach to stochastic systems, this book presents a wide range of techniques that lead to novel strategies for effecting intelligent control of complex systems that are typically characterised by uncertainty, nonlinear dynamics, component failure, unpredictable disturbances, multi-modality and high dimensional spaces.




Neural Network Control of Nonlinear Discrete-Time Systems


Book Description

Intelligent systems are a hallmark of modern feedback control systems. But as these systems mature, we have come to expect higher levels of performance in speed and accuracy in the face of severe nonlinearities, disturbances, unforeseen dynamics, and unstructured uncertainties. Artificial neural networks offer a combination of adaptability, parallel processing, and learning capabilities that outperform other intelligent control methods in more complex systems. Borrowing from Biology Examining neurocontroller design in discrete-time for the first time, Neural Network Control of Nonlinear Discrete-Time Systems presents powerful modern control techniques based on the parallelism and adaptive capabilities of biological nervous systems. At every step, the author derives rigorous stability proofs and presents simulation examples to demonstrate the concepts. Progressive Development After an introduction to neural networks, dynamical systems, control of nonlinear systems, and feedback linearization, the book builds systematically from actuator nonlinearities and strict feedback in nonlinear systems to nonstrict feedback, system identification, model reference adaptive control, and novel optimal control using the Hamilton-Jacobi-Bellman formulation. The author concludes by developing a framework for implementing intelligent control in actual industrial systems using embedded hardware. Neural Network Control of Nonlinear Discrete-Time Systems fosters an understanding of neural network controllers and explains how to build them using detailed derivations, stability analysis, and computer simulations.




Adaptive Dynamic Programming: Single and Multiple Controllers


Book Description

This book presents a class of novel optimal control methods and games schemes based on adaptive dynamic programming techniques. For systems with one control input, the ADP-based optimal control is designed for different objectives, while for systems with multi-players, the optimal control inputs are proposed based on games. In order to verify the effectiveness of the proposed methods, the book analyzes the properties of the adaptive dynamic programming methods, including convergence of the iterative value functions and the stability of the system under the iterative control laws. Further, to substantiate the mathematical analysis, it presents various application examples, which provide reference to real-world practices.




Adaptive Identification and Control of Uncertain Systems with Non-smooth Dynamics


Book Description

Adaptive Identification and Control of Uncertain Systems with Nonsmooth Dynamics reports some of the latest research on modeling, identification and adaptive control for systems with nonsmooth dynamics (e.g., backlash, dead zone, friction, saturation, etc). The authors present recent research results for the modelling and control designs of uncertain systems with nonsmooth dynamics, such as friction, dead-zone, saturation and hysteresis, etc., with particular applications in servo systems. The book is organized into 19 chapters, distributed in five parts concerning the four types of nonsmooth characteristics, namely friction, dead-zone, saturation and hysteresis, respectively. Practical experiments are also included to validate and exemplify the proposed approaches. This valuable resource can help both researchers and practitioners to learn and understand nonlinear adaptive control designs. Academics, engineers and graduate students in the fields of electrical engineering, control systems, mechanical engineering, applied mathematics and computer science can benefit from the book. It can be also used as a reference book on adaptive control for servo systems for students with some background in control engineering. - Explains the latest research outputs on modeling, identification and adaptive control for systems with nonsmooth dynamics - Provides practical application and experimental results for robotic systems, and servo motors




Robust Adaptive Control for Fractional-Order Systems with Disturbance and Saturation


Book Description

A treatise on investigating tracking control and synchronization control of fractional-order nonlinear systems with system uncertainties, external disturbance, and input saturation Robust Adaptive Control for Fractional-Order Systems, with Disturbance and Saturation provides the reader with a good understanding on how to achieve tracking control and synchronization control of fractional-order nonlinear systems with system uncertainties, external disturbance, and input saturation. Although some texts have touched upon control of fractional-order systems, the issues of input saturation and disturbances have rarely been considered together. This book offers chapter coverage of fractional calculus and fractional-order systems; fractional-order PID controller and fractional-order disturbance observer; design of fractional-order controllers for nonlinear chaotic systems and some applications; sliding mode control for fractional-order nonlinear systems based on disturbance observer; disturbance observer based neural control for an uncertain fractional-order rotational mechanical system; adaptive neural tracking control for uncertain fractional-order chaotic systems subject to input saturation and disturbance; stabilization control of continuous-time fractional positive systems based on disturbance observer; sliding mode synchronization control for fractional-order chaotic systems with disturbance; and more. Based on the approximation ability of the neural network (NN), the adaptive neural control schemes are reported for uncertain fractional-order nonlinear systems Covers the disturbance estimation techniques that have been developed to alleviate the restriction faced by traditional feedforward control and reject the effect of external disturbances for uncertain fractional-order nonlinear systems By combining the NN with the disturbance observer, the disturbance observer based adaptive neural control schemes have been studied for uncertain fractional-order nonlinear systems with unknown disturbances Considers, together, the issue of input saturation and the disturbance for the control of fractional-order nonlinear systems in the present of system uncertainty, external disturbance, and input saturation Robust Adaptive Control for Fractional-Order Systems, with Disturbance and Saturation can be used as a reference for the academic research on fractional-order nonlinear systems or used in Ph.D. study of control theory and engineering.




Systems with Hysteresis


Book Description

Hysteresis phenomena are common in numerous physical, mechanical, ecological and biological systems. They reflect memory effects and process irreversibility. The use of hysteresis operators (hysterons) offers an approach to macroscopic modelling of the dynamics of phase transitions and rheological systems. The applications cover processes in electromagnetism, elastoplasticity and population dynamics in particular. Hysterons are also typical elements of control systems where they represent thermostats and other discontinuous controllers with memory. The book offers the first systematic mathematical treatment of hysteresis nonlinearities. Construction procedures are set up for hysterons in various function spaces, in continuous and discontinuous cases. A general theory of variable hysterons is developed, including identification and stability questions. Both deterministic and non-deterministic hysterons are considered, with applications to the study of feedback systems. Many of the results presented - mostly obtained by the authors and their scientific group - have not been published before. The book is essentially self contained and is addressed both to researchers and advanced students.