Neural Networks in QSAR and Drug Design


Book Description

Comprehensive and impeccably edited, Neural Networks in QSAR and Drug Design is the first book to present an all-inclusive coverage of the topic. The book provides a practice-oriented introduction to the different neural network paradigms, allowing the reader to easily understand and reproduce the results demonstrated. Numerous examples are detailed, demonstrating a variety of applications to QSAR and drug design.The contributors include some of the most distinguished names in the field, and the book provides an exhaustive bibliography, guiding readers to all the literature related to a particular type of application or neural network paradigm. The extensive index acts as a guide to the book, and makes retrieving information from chapters an easy task. A further research aid is a list of software with indications of availablility and price, as well as the editors scale rating the ease of use and interest/price ratio of each software package. The presentation of new, powerful tools for modeling molecular properties and the inclusion of many important neural network paradigms, coupled with extensive reference aids, makes Neural Networks in QSAR and Drug Design an essential reference source for those on the frontiers of this field. - Presents the first coverage of neural networks in QSAR and Drug Design - Allows easy understanding and reproduction of the results described within - Includes an exhaustive bibliography with more than 200 references - Provides a list of applicable software packages with availability and price




Artificial Intelligence in Drug Design


Book Description

This volume looks at applications of artificial intelligence (AI), machine learning (ML), and deep learning (DL) in drug design. The chapters in this book describe how AI/ML/DL approaches can be applied to accelerate and revolutionize traditional drug design approaches such as: structure- and ligand-based, augmented and multi-objective de novo drug design, SAR and big data analysis, prediction of binding/activity, ADMET, pharmacokinetics and drug-target residence time, precision medicine and selection of favorable chemical synthetic routes. How broadly are these approaches applied and where do they maximally impact productivity today and potentially in the near future. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary software and tools, step-by-step, readily reproducible modeling protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and unique, Artificial Intelligence in Drug Design is a valuable resource for structural and molecular biologists, computational and medicinal chemists, pharmacologists and drug designers.




GeNeDis 2018


Book Description

The 3rd World Congress on Genetics, Geriatrics, and Neurodegenerative Disease Research (GeNeDis 2018), focuses on recent advances in genetics, geriatrics, and neurodegeneration, ranging from basic science to clinical and pharmaceutical developments. It also provides an international forum for the latest scientific discoveries, medical practices, and care initiatives. Advanced information technologies are discussed, including the basic research, implementation of medico-social policies, and the European and global issues in the funding of long-term care for elderly people.




3D QSAR in Drug Design


Book Description

Volumes 2 and 3 of the 3D QSAR in Drug Design series aim to review the progress being made in CoMFA and other 3D QSAR approaches since the publication of the highly successful first volume about four years ago. Volume 2 (Ligand-Protein Interactions and Molecular Similarity) divides into three sections dealing with Ligand-Protein Interactions, Quantum Chemical Models and Molecular Dynamics Simulations, and Pharmacophore Modelling and Molecular Similarity, respectively. Volume 3 (Recent Advances) is also divided into three sections, namely 3D QSAR Methodology: CoMFA and Related Approaches, Receptor Models and Other 3D QSAR Approaches, and 3D QSAR Applications. More than seventy distinguished scientists have contributed nearly forty reviews of their work and related research to these two volumes which are of outstanding quality and timeliness. These works present an up-to-date coverage of the latest developments in all fields of 3D QSAR.




De novo Molecular Design


Book Description

Systematically examining current methods and strategies, this ready reference covers a wide range of molecular structures, from organic-chemical drugs to peptides, Proteins and nucleic acids, in line with emerging new drug classes derived from biomacromolecules. A leader in the field and one of the pioneers of this young discipline has assembled here the most prominent experts from across the world to provide first-hand knowledge. While most of their methods and examples come from the area of pharmaceutical discovery and development, the approaches are equally applicable for chemical probes and diagnostics, pesticides, and any other molecule designed to interact with a biological system. Numerous images and screenshots illustrate the many examples and method descriptions. With its broad and balanced coverage, this will be the firststop resource not only for medicinal chemists, biochemists and biotechnologists, but equally for bioinformaticians and molecular designers for many years to come. From the content: * Reaction-driven de novo design * Adaptive methods in molecular design * Design of ligands against multitarget profiles * Free energy methods in ligand design * Fragment-based de novo design * Automated design of focused and target family-oriented compound libraries * Molecular de novo design by nature-inspired computing * 3D QSAR approaches to de novo drug design * Bioisosteres in de novo design * De novo design of peptides, proteins and nucleic acid structures, including RNA aptamers and many more.




Handbook of Chemoinformatics


Book Description

"The new discipline of chemoinformatics covers the application of computer-assisted methods to chemical problems such as information storage and retrieval, the prediction of physical, chemical or biological properties of compounds, spectra simulation, structure elucidation, reaction modeling, synthesis planning and drug design. ... this four-volume Handbook contains in-depth contributions from top authors from around the world, with the content organized into chapters dealing with the representation of molecular structures and reactions, data types and databases/data sources, search methods, methods for data analysis as well as applications"--Back cover.




Artificial Intelligence in Drug Discovery


Book Description

Following significant advances in deep learning and related areas interest in artificial intelligence (AI) has rapidly grown. In particular, the application of AI in drug discovery provides an opportunity to tackle challenges that previously have been difficult to solve, such as predicting properties, designing molecules and optimising synthetic routes. Artificial Intelligence in Drug Discovery aims to introduce the reader to AI and machine learning tools and techniques, and to outline specific challenges including designing new molecular structures, synthesis planning and simulation. Providing a wealth of information from leading experts in the field this book is ideal for students, postgraduates and established researchers in both industry and academia.




Drug-like Properties: Concepts, Structure Design and Methods


Book Description

Of the thousands of novel compounds that a drug discovery project team invents and that bind to the therapeutic target, typically only a fraction of these have sufficient ADME/Tox properties to become a drug product. Understanding ADME/Tox is critical for all drug researchers, owing to its increasing importance in advancing high quality candidates to clinical studies and the processes of drug discovery. If the properties are weak, the candidate will have a high risk of failure or be less desirable as a drug product. This book is a tool and resource for scientists engaged in, or preparing for, the selection and optimization process. The authors describe how properties affect in vivo pharmacological activity and impact in vitro assays. Individual drug-like properties are discussed from a practical point of view, such as solubility, permeability and metabolic stability, with regard to fundamental understanding, applications of property data in drug discovery and examples of structural modifications that have achieved improved property performance. The authors also review various methods for the screening (high throughput), diagnosis (medium throughput) and in-depth (low throughput) analysis of drug properties. - Serves as an essential working handbook aimed at scientists and students in medicinal chemistry - Provides practical, step-by-step guidance on property fundamentals, effects, structure-property relationships, and structure modification strategies - Discusses improvements in pharmacokinetics from a practical chemist's standpoint




Artificial Neural Network for Drug Design, Delivery and Disposition


Book Description

Artificial Neural Network for Drug Design, Delivery and Disposition provides an in-depth look at the use of artificial neural networks (ANN) in pharmaceutical research. With its ability to learn and self-correct in a highly complex environment, this predictive tool has tremendous potential to help researchers more effectively design, develop, and deliver successful drugs. This book illustrates how to use ANN methodologies and models with the intent to treat diseases like breast cancer, cardiac disease, and more. It contains the latest cutting-edge research, an analysis of the benefits of ANN, and relevant industry examples. As such, this book is an essential resource for academic and industry researchers across the pharmaceutical and biomedical sciences. - Written by leading academic and industry scientists who have contributed significantly to the field and are at the forefront of artificial neural network (ANN) research - Focuses on ANN in drug design, discovery and delivery, as well as adopted methodologies and their applications to the treatment of various diseases and disorders - Chapters cover important topics across the pharmaceutical process, such as ANN in structure-based drug design and the application of ANN in modern drug discovery - Presents the future potential of ANN-based strategies in biomedical image analysis and much more




Genetic Algorithms in Molecular Modeling


Book Description

Genetic Algorithms in Molecular Modeling is the first book available on the use of genetic algorithms in molecular design. This volume marks the beginning of an ew series of books, Principles in Qsar and Drug Design, which will be an indispensible reference for students and professionals involved in medicinal chemistry, pharmacology, (eco)toxicology, and agrochemistry. Each comprehensive chapter is written by a distinguished researcher in the field. Through its up to the minute content, extensive bibliography, and essential information on software availability, this book leads the reader from the theoretical aspects to the practical applications. It enables the uninitiated reader to apply genetic algorithms for modeling the biological activities and properties of chemicals, and provides the trained scientist with the most up to date information on the topic. - Extremely topical and timely - Sets the foundations for the development of computer-aided tools for solving numerous problems in QSAR and drug design - Written to be accessible without prior direct experience in genetic algorithms