Neural Principles in Vision


Book Description

Scientific investigation of the retina began with extensive studies of its anatomical structure. The selective staining of neurons achieved by the Golgi method has led to a comprehensive picture of the architecture of the tissue in terms of its individ ual elements. Cajal, in particular, used this tech nique to reveal the fundamentals of retinal struc ture. In the studies that followed, selective stain ing method continued to be decisive in the analysis of neuroanatomy, and in recent years these techniques have been complemented by electron microscopy. The complexity of retinal structure that has been revealed demands a functional explanation, and elec trophysiology attempts to provide it. But functional analysis, like anatomy, must ultimately be based on the single cell. It is only by using dyes to mark the recording site that one can identify the cells involved. When this succeeds, as it has recently, one can actually fit functional events into the ana tomical framework. With these advances, our strate gies and tactics toward an understanding of the structure and function of the retina have moved in to a new phase.




Principles of Neural Science


Book Description




Foundations of Vision


Book Description

Designed for students, scientists and engineers interested in learning about the core ideas of vision science, this volume brings together the broad range of data and theory accumulated in this field.




Principles of Neural Design


Book Description

Neuroscience research has exploded, with more than fifty thousand neuroscientists applying increasingly advanced methods. A mountain of new facts and mechanisms has emerged. And yet a principled framework to organize this knowledge has been missing. In this book, Peter Sterling and Simon Laughlin, two leading neuroscientists, strive to fill this gap, outlining a set of organizing principles to explain the whys of neural design that allow the brain to compute so efficiently. Setting out to "reverse engineer" the brain -- disassembling it to understand it -- Sterling and Laughlin first consider why an animal should need a brain, tracing computational abilities from bacterium to protozoan to worm. They examine bigger brains and the advantages of "anticipatory regulation"; identify constraints on neural design and the need to "nanofy"; and demonstrate the routes to efficiency in an integrated molecular system, phototransduction. They show that the principles of neural design at finer scales and lower levels apply at larger scales and higher levels; describe neural wiring efficiency; and discuss learning as a principle of biological design that includes "save only what is needed." Sterling and Laughlin avoid speculation about how the brain might work and endeavor to make sense of what is already known. Their distinctive contribution is to gather a coherent set of basic rules and exemplify them across spatial and functional scales.




Webvision


Book Description




Vision and Brain


Book Description

An engaging introduction to the science of vision that offers a coherent account of vision based on general information processing principles In this accessible and engaging introduction to modern vision science, James Stone uses visual illusions to explore how the brain sees the world. Understanding vision, Stone argues, is not simply a question of knowing which neurons respond to particular visual features, but also requires a computational theory of vision. Stone draws together results from David Marr's computational framework, Barlow's efficient coding hypothesis, Bayesian inference, Shannon's information theory, and signal processing to construct a coherent account of vision that explains not only how the brain is fooled by particular visual illusions, but also why any biological or computer vision system should also be fooled by these illusions. This short text includes chapters on the eye and its evolution, how and why visual neurons from different species encode the retinal image in the same way, how information theory explains color aftereffects, how different visual cues provide depth information, how the imperfect visual information received by the eye and brain can be rescued by Bayesian inference, how different brain regions process visual information, and the bizarre perceptual consequences that result from damage to these brain regions. The tutorial style emphasizes key conceptual insights, rather than mathematical details, making the book accessible to the nonscientist and suitable for undergraduate or postgraduate study.




Conn's Translational Neuroscience


Book Description

Conn's Translational Neuroscience provides a comprehensive overview reflecting the depth and breadth of the field of translational neuroscience, with input from a distinguished panel of basic and clinical investigators. Progress has continued in understanding the brain at the molecular, anatomic, and physiological levels in the years following the 'Decade of the Brain,' with the results providing insight into the underlying basis of many neurological disease processes. This book alternates scientific and clinical chapters that explain the basic science underlying neurological processes and then relates that science to the understanding of neurological disorders and their treatment. Chapters cover disorders of the spinal cord, neuronal migration, the autonomic nervous system, the limbic system, ocular motility, and the basal ganglia, as well as demyelinating disorders, stroke, dementia and abnormalities of cognition, congenital chromosomal and genetic abnormalities, Parkinson's disease, nerve trauma, peripheral neuropathy, aphasias, sleep disorders, and myasthenia gravis. In addition to concise summaries of the most recent biochemical, physiological, anatomical, and behavioral advances, the chapters summarize current findings on neuronal gene expression and protein synthesis at the molecular level. Authoritative and comprehensive, Conn's Translational Neuroscience provides a fully up-to-date and readily accessible guide to brain functions at the cellular and molecular level, as well as a clear demonstration of their emerging diagnostic and therapeutic importance. - Provides a fully up-to-date and readily accessible guide to brain functions at the cellular and molecular level, while also clearly demonstrating their emerging diagnostic and therapeutic importance - Features contributions from leading global basic and clinical investigators in the field - Provides a great resource for researchers and practitioners interested in the basic science underlying neurological processes - Relates and translates the current science to the understanding of neurological disorders and their treatment




Neuroradiology Signs


Book Description

A COMPREHENSIVE, FULL-COLOR GUIDE TO NEURORADIOLOGY SIGNS ACROSS ALL IMAGING MODALITIES The first book of its kind, Neuroradiology Signs provides a multimodality review of more than 440 neuroradiologic signs in CT, MR, angiography, radiography, ultrasound, and nuclear medicine. It is designed to enhance your recognition of specific imaging patterns, enabling you to arrive at an accurate diagnosis. Neuroradiology Signs consists of 7 chapters: Adult and General Brain Pediatric Brain Head, Neck, and Orbits Vascular Skull and Facial Bones Vertebrae Spinal Cord and Nerves All cases have been reviewed by subspecialty experts and include: Imaging Findings Modalities Differential Diagnosis Discussion References Full-color photographs illustrate sign etymology and enhance your learning experience. The index is conveniently organized by sign, diagnosis, and modality. Neuroradiology Signs is a valuable review for trainees preparing for board examinations and a trusted daily reference for practicing clinicians.




Introduction to Psychology


Book Description

This book is designed to help students organize their thinking about psychology at a conceptual level. The focus on behaviour and empiricism has produced a text that is better organized, has fewer chapters, and is somewhat shorter than many of the leading books. The beginning of each section includes learning objectives; throughout the body of each section are key terms in bold followed by their definitions in italics; key takeaways, and exercises and critical thinking activities end each section.




Principles of Neural Science


Book Description

The goal of this sixth edition of Principles of Neural Science is to provide readers with insight into how genes, molecules, neurons, and the circuits they form give rise to behavior. With the exponential growth in neuroscience research over the 40 years since the first edition of this book, an increasing challenge is to provide a comprehensive overview of the field while remaining true to the original goal of the first edition, which is to elevate imparting basic principles over detailed encyclopedic knowledge.