Neural Regulation of Metabolism


Book Description

This book systemically describes the mechanisms underlying the neural regulation of metabolism. Metabolic diseases, including obesity and its associated conditions, currently affect more than 500 million people worldwide. Recent research has shown that the neural regulation of metabolism is a central mechanism that controls metabolic status physiologically and pathophysiologically. The book first introduces the latest studies on the neural and cellular mechanisms of hypothalamic neurons, hypothalamic glial cells, neural circuitries, cellular signaling pathways, and synaptic plasticity in the control of appetite, body weight, feeding-related behaviors and metabolic disorders. It then summarizes the humoral mechanisms by which critical adipocyte-derived hormones and lipoprotein lipase regulate lipid and glucose metabolism, and examines the role of the hypothalamus-sympathetic nerve, a critical nerve pathway from CNS to peripheral nervous system (PNS), in the regulation of metabolism in multiple tissues/organs. Furthermore, the book discusses the functions of adipose tissue in energy metabolism. Lastly, it explores dietary interventions to treat neural diseases and some of the emerging technologies used to study the neural regulation of metabolism. Presenting cutting-edge developments in the neural regulation of metabolism, the book is a valuable reference resource for graduate students and researchers in the field of neuroscience and metabolism.




Neuron Signaling in Metabolic Regulation


Book Description

This book focuses on neuron signaling in the regulation of metabolism and body weight, and especially on methods used in these studies. Obesity and related metabolic syndromes have reached epidemic status, but still are no effective strategies for prevention and treatment. Body weight homeostasis is maintained by balanced food intake and energy expenditure, both of which are under the control of brain neurons. In the recent years, significant progress has been made in identifying specific neurons, neural pathways, and non-neuron cells in feeding regulation, as well as in delineating autonomic nervous systems targeting peripheral metabolic tissues in the regulation of energy expenditure and metabolism. This book reviews recent progress on important neuron signaling for body weight and metabolic regulation and the state-of-the-art methods that has been applied in this field, ranging from animal models with neuron-specific manipulations, pharmacology, optogenetics, in vivo Ca2+ imaging, and viral tracing. Readers will be exposed to latest research frontiers on neuron regulation of metabolism. Key Features Explores the role signaling between neurons plays with respect to metabolism Documents how neurotransmitters affect the regulation of feeding Describes various methods and technologies used to study the neuronal control of metabolism Includes contributions from an international team of leading researchers. Related Titles Lim, W. & B. Mayer. Cell Signaling: Principles and Mechanisms (ISBN 978-0-8153-4244-1) Feltz, A. Physiology of Neurons (ISBN 978-0-8153-4600-5) Zempleni, J. & K. Dakshinamurti, eds. Nutrients and Cell Signaling (ISBN 978-0367-39307-6)




Neural Metabolism In Vivo


Book Description

From the preface: “Neural Metabolism In Vivo aims to provide a comprehensive overview of neurobiology by presenting the basic principles of up-to-date and cutting-edge technology, as well as their application in assessing the functional, morphological and metabolic aspects of the brain. Investigation of neural activity of the living brain via neurovascular coupling using multimodal imaging techniques extended our understanding of fundamental neurophysiological mechanisms, regulation of cerebral blood flow in connection to neural activity and the interplay between neurons, astrocytes and blood vessels. Constant delivery of glucose and oxygen for energy metabolism is vital for brain function, and the physiological basis of neural activity can be assessed through measurements of cerebral blood flow and consumption of glucose and oxygen.... This book presents the complex physiological and neurochemical processes of neural metabolism and function in response to various physiological conditions and pharmacological stimulations. Neurochemical detection technologies and quantitative aspects of monitoring cerebral energy substrates and other metabolites in the living brain are described under the “Cerebral metabolism of antioxidants, osmolytes and others in vivo” section. Altogether, the advent of new in vivo tools has transformed neuroscience and neurobiology research, and demands interdisciplinary approaches as each technology could only approximate a very small fraction of the true complexity of the underlying biological processes. However, translational values of the emerging in vivo methods to the application of preclinical to clinical studies cannot be emphasized enough. Thus, it is our hope that advances in our understanding of biochemical, molecular, functional and physiological processes of the brain could eventually help people with neurological problems, which are still dominated by the unknowns.” -- In-Young Choi and Rolf Gruetter




Neural Control of Hepatic Lipid Metabolism


Book Description

"Our body is well designed to store energy in times of nutrient excess and release energy in times of need. This adaptation to the external environment is achieved by both humoral factors and the autonomic nervous system. Already in the 19th century, Claude Bernard pointed out the importance of the autonomic nervous system in the control of glucose metabolism. In the next century, the discovery of insulin and the development of techniques to measure hormone concentrations shifted the focus of the control of metabolism to the secretion of hormones, thus functionally "decapitating" the body. Just before the end of the 20th century, starting with the discovery of leptin in 1994, the control of energy metabolism went back to our heads. Today, the autonomic nervous system is acknowledged as one of the important determinants of liver metabolism and as a possible treatment target. This thesis investigates the role of the autonomic nervous system in the control of hepatic lipid metabolism during different physiological conditions. We found that the sympathetic and parasympathetic nervous system represent complimentary forces, fine-tuning hepatic lipid metabolism during different nutritional states."--Samenvatting auteur.




Brain Energy Metabolism


Book Description

Brain Energy Metabolism addresses its challenging subject by presenting diverse technologies allowing for the investigation of brain energy metabolism on different levels of complexity. Model systems are discussed, starting from the reductionist approach like primary cell cultures which allow assessing of the properties and functions of a single brain cell type with many different types of analysis, however, at the expense of neglecting the interaction between cell types in the brain. On the other end, analysis in animals and humans in vivo is discussed, maintaining the full complexity of the tissue and the organism but making high demands on the methods of analysis. Written for the popular Neuromethods series, chapters include the kind of detailed description and key implementation advice that aims to support reproducible results in the lab. Meticulous and authoritative, Brain Energy Metabolism provides an ideal guide for researchers interested in brain energy metabolism with the hope of stimulating more research in this exciting and very important field.




Metabolism of the Nervous System


Book Description

Metabolism of the Nervous System contains the proceedings of the 2nd International Neurochemical Symposium, held at Aarhus, Denmark, in July 1956. The book discusses the molecular structure and morphology of the adult nervous tissue; the chemical composition and cytochemical localization of adult nervous tissue; and the permeability and blood-brain barrier. The text also describes topics on electrolytes and nervous conduction; the metabolism of isolated nerve and ganglion; and the metabolism of the brain in vivo. The metabolism of brain tissue preparations in vitro; energy metabolism and coenzymes in relation to the nervous system; and lipid and fatty acid metabolism are also considered. The book further tackles nucleic acid metabolism; protein and amino acid metabolism; and cholinergic and non-cholinergic transmission. The text also discusses other pharmacologically active compounds related to the adult nervous tissue.




Obesity and Diabetes Mellitus


Book Description

This book is the result of the study of metabolic and hormonal disorders in patients suffering obesity and diabetes mellitus, focusing on mechanisms of formation of atherosclerotic changes in the myocardium and vessels in diabetes mellitus patient.




Glial-Neuronal Signaling in Neuroendocrine Systems


Book Description

This volume discusses current research on glial-neuronal interactions in several neuroendocrine systems. Glial-neuronal bidirectional transmission represents one of the fastest-growing areas of investigation in neuroscience today. Unraveling the interactions and signaling synergy between glial cells and neurons is critical to advancing our understanding of brain function. Consequently, this book summarizes the latest findings on the roles of astrocytes, microglia and tanycytes in the control of synaptic transmission, synaptic plasticity, blood-brain signaling, neuroinflammation and immune signaling. In addition, leading experts in the field discuss how reproductive function, the stress response and energy homeostasis are regulated by glial-neuronal communication. Given its scope, the book is essential reading for undergraduate and graduate students in the neurosciences, as well as postdoctoral fellows and established researchers who are looking for a comprehensive overview of glial-neuronal crosstalk in neuroendocrine systems. This is the eleventh volume in the International Neuroendocrine Federation (INF) Masterclass in Neuroendocrinology series (Volumes 1-7 published by Wiley), which aims to illustrate the highest standards and highlight the latest technologies in basic and clinical research, and aspires to provide inspiration for further exploration into the exciting field of neuroendocrinology.







How Gut and Brain Control Metabolism


Book Description

Obesity is an epidemic problem not limited to Western society, but also in emerging industrial nations with large populations, especially in Asia. The connection between the gut and the brain is probably one of the most promising therapeutic targets for the treatment of obesity and metabolic syndrome. This book brings together reviews on the current understanding of how the gut and brain communicate in the regulation of metabolism. Individual chapters explore novel aspects of this interaction. A comprehensive update on the roles of smell and taste, the gut microbiome, and novel gut-derived neuropeptides in regulating metabolism via the brain is offered. Furthermore, the regulation of insulin sensitivity in the brain is discussed in detail. Providing an overview of the most recent findings, 'How Gut and Brain Control Metabolism' could spark in the reader new ideas or approaches, thus leading to much-needed new medical treatments. Physicians with an involvement in the treatment of metabolic disease and scientists performing research in the fields of nutrition and obesity will find this book a valuable addition to their bookshelves.