Neurohormonal Techniques in Insects


Book Description

Insects as a group occupy a middle ground in the biosphere between bac teria and viruses at one extreme, amphibians and mammals at the other. The size and general nature of insects present special problems to the student of entomology. For example, many commercially available in struments are geared to measure in grams, while the forces commonly en countered in studying insects are in the milligram range. Therefore, tech the study of insects or in those fields concerned with niques developed in the control of insect pests are often unique. Methods for measuring things are common to all sciences. Advances sometimes depend more on how something was done than on what was measured; indeed a given field often progresses from one technique to another as new methods are discovered, developed, and modified. Just as often, some of these techniques find their way into the classroom when the problems involved have been sufficiently ironed out to permit students to master the manipulations in a few laboratory periods. Many specialized techniques are confined to one specific research labo ratory. Although methods may be considered commonplace where they are used, in another context even the simplest procedures may save con siderable time. It is the purpose of this series (1) to report new develop ments in methodology, (2) to reveal sources of groups who have dealt with and solved particular entomological problems, and (3) to describe ex periments which might be applicable for use in biology laboratory courses.




Insect Endocrinology


Book Description

The publication of the extensive seven-volume work Comprehensive Molecular Insect Science provided a complete reference encompassing important developments and achievements in modern insect science. One of the most swiftly moving areas in entomological and comparative research is endocrinology, and this volume, Insect Endocrinology, is designed for those who desire a comprehensive yet concise work on important aspects of this topic. Because this area has moved quickly since the original publication, articles in this new volume are revised, highlighting developments in the related area since its original publication. Insect Endocrinology covers the mechanism of action of insect hormones during growth and metamorphosis as well as the role of insect hormones in reproduction, diapause and the regulation of metabolism. Contents include articles on the juvenile hormones, circadian organization of the endocrine system, ecdysteroid chemistry and biochemistry, as well as new chapters on insulin-like peptides and the peptide hormone Bursicon. This volume will be of great value to senior investigators, graduate students, post-doctoral fellows and advanced undergraduate research students. It can also be used as a reference for graduate courses and seminars on the topic. Chapters will also be valuable to the applied biologist or entomologist, providing the requisite understanding necessary for probing the more applied research areas. - Articles selected by the known and respected editor-in-chief of the original major reference work, Comprehensive Molecular Insect Science - Newly revised contributions bring together the latest research in the quickly moving field of insect endocrinology - Review of the literature of the past five years is now included, as well as full use of data arising from the application of molecular technologies wherever appropriate




Neurochemical Techniques in Insect Research


Book Description

Neurochemical Techniques in Insect Research properly emphasizes the insect. It only scratches the surface of the exploding repertoire of general neuro chemical techniques that can be applied to insect research in 1985. But it al so presents the advantages of using insects for studying certain biological questions that are approachable by neurochemical techniques. Even more so, it summarizes the long list of unique problems encountered in attempting to study insects by neurochemical techniques. As in other volumes of this series, the contributors to this volume are the authorities in the field. They themselves have developed much of the material presented. Thus the sum effort provides a true description of the state of the art; and, pleasantly, it does so in a very complete and clear manner. Readers of this series will not need to be reminded that, despite the fact that vertebrates make up only about 3% of all animal species, research in in vertebrates such as insects has lagged behind that on vertebrates, at least in the neurochemistry area; the relative simplicity and large cell size of the in sect nervous system has always provided incentive for work in neurophysiol ogy and neuroanatomy. Toxicology interests will always stimulate a certain amount of work on insect neuropharmacology, and insects are extremely suitable for several areas of toxin research. Last but not least, the insects are beautiful organisms for which the applications of genetics can be made to the study of nervous system function.




Immunological Techniques in Insect Biology


Book Description

Insects as a group occupy a middle ground in the biosphere between bacteria and viruses at one extreme, amphibians and mammals at the other. The size and general nature of insects present special problems to the study of ento mology. For example, many commercially available instruments are geared to measure in grams, while the forces commonly encountered in studying insects are in the milligram range. Therefore, techniques developed in the study of insects or in those fields concerned with the control of insect pests are often unique. Methods for measuring things are common to all sciences. Advances some times depend more on how something was done than on what was measured; indeed a given field often progresses from one technique to another as new methods are discovered, developed, and modified. Just as often, some of these techniques find their way into the classroom when the problems involved have been sufficiently ironed out to permit students to master the manipulations in a few laboratory periods. Many specialized techniques are confined to one specific research labora tory. Although methods may be considered commonplace where they are used, in another context even the simplest procedures may save considerable time. It is the purpose of this series (1) to report new developments in method ology, (2) to reveal sources of groups who have dealt with and solved particular entomological problems, and (3) to describe experiments which may be appli cable for use in biology laboratory courses.




Neurohormones in Invertebrates


Book Description

This volume provides a particularly timely survey of invertebrate peptide hormones. Interest in invertebrate peptide hormones has focused upon two important and related aspects, both of which are fully covered in this volume. As such, it should have a broad appeal to scientists from a number of disciplines.




Neuropharmacology of Insects


Book Description

The Novartis Foundation Series is a popular collection of the proceedings from Novartis Foundation Symposia, in which groups of leading scientists from a range of topics across biology, chemistry and medicine assembled to present papers and discuss results. The Novartis Foundation, originally known as the Ciba Foundation, is well known to scientists and clinicians around the world.




Advances in Insect Physiology


Book Description

Advances in Insect Physiology




Environmental Physiology and Biochemistry of Insects


Book Description

Of all the zoological classes the insects are the most numerous in species and the most varied in structure. Estimates of the number 18 of species vary from 1 to 10 million, and 10 individuals are es timated to be alive at any given moment. In their evolution, in sects are relatively ancient and, therefore, they have proved to be a phenomenally successful biological design which has survived unchanged in its basic winged form during the last 300 m. y. In sects were the first small animals to colonize the land with full suc cess. Their small size opened many more ecological niches to them and permitted a greater diversification than the vertebrates. What is it about this design that has made insects so successful in habitats stretching from arid deserts to the Arctic and Antarctic and from freshwater brooks to hot springs and salines? Is it due to the adapta bility of their behavior, physiology, and biochemistry to changing environmental conditions? Three features of insects are of particular importance in determin ing their physiological relationship with the environment: their small size, as mentioned above, the impermeability and rigidity of their exoskeleton, and their poikilothermy. Of course, as with any other animals, the insects' success in its environment depends on its ability to maintain its internal state within certain tolerable limits of temperature, osmotic pressure, pH or oxygen concentra tion (homoeostasis).




Photoperiodic Regulation of Insect and Molluscan Hormones


Book Description

The Novartis Foundation Series is a popular collection of the proceedings from Novartis Foundation Symposia, in which groups of leading scientists from a range of topics across biology, chemistry and medicine assembled to present papers and discuss results. The Novartis Foundation, originally known as the Ciba Foundation, is well known to scientists and clinicians around the world.




Insect Neurohormones


Book Description

The discovery of insect neurohormones dates from the earliest experimental in vestigations in insect endocrines, and the matter cannot be discussed without evoking the names of its pioneers-Kopec, Wigglesworth, Fraenkel. Whereas the experiments demonstrated the existence of the first known neurohormones, the formulation of the concept of neurosecretion was of fundamental importance to further progress, and tribute must be paid to Ernst and Berta Scharrer. The recent proliferation of investigations into insect neurohormones has cre ated the need for an overall review of the data. Our knowledge of the subject is voluminous, and the evidence clearly demonstrates that neurohormones playa part in most insect regulatory processes. This book analyzes and synthesizes the data, starting from neurosecretion (i.e., source sites and release modes of neurohormones) and continuing through the various functions in which neurohormones have been shown to be involved: endocrine gland activity; diapause; reproduction; visceral muscle functioning; color change; behavior; water and ion balance; protein, sugar, and lipid metabo lism; and tanning and other processes occurring at the cuticle level. In each chapter, besides the experimental information, technical procedures as well as recent information concerning purification of the particular neurohor mones and their mode of action are reported. Numerous exhaustive tables allow the reader to get an overview of the matter while the major findings of the mo ment are presented in the conclusion of each chapter.